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\\ Preface

This technical report consists of three parts. The central problem is

the extrapolation of band-limited signals.

In part I, several existing algorithms for band-limited extrapolation are
compared: Two-step procedures appeared to give better reconstructions and require
less computing time than iterative algorithms.

In part II, five basic pro;edures for iterative restoration are unified
using a Hilbert Space approach. In particular, all known iterative algorithms
for extrapolation of band-limited signals are shown to be special cases of
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Bialy's iteration. —We-also ebtaiq faster algorithms than that of Papoulis-

Gerchberg. 0 [’fa'." s

In part III, the extrapolation problem is presented in a more general
Jresentode 45ya- <o
setting: Continuation of certain analytic functions. WUWe -preseat two-setps “,’
procedures for finding the continuation of these functions. Some new

procedures for band-limited continuation are also discussed as well as the

case in which the signal is contaminated with noise.
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Numerical Comparison of Several Algorithas for

Band-Limited Signal Extrapolation

Thomss S. Huang
Jorge L.C. Sanz
Hong Fan
Jamal Shafii

Bin-ming Tsai

Coordinated Science Laboratory
1101 West Springfield Avenue
University of Illinois at Urbana-Champaign

Urbana, Illinois 61801

ABSTRACT

Ve present some computer simulation results on the band-limited signal
extrapolation problem., First, the performance of several existing algorithms
‘are compared for the noise~free case. Then we describe some modifications of
these algorithms for computing the extrapolation when the given signal is

contaminated with noise., Computer simulation results for both the noiseless

and noisy cases are included. From these results, the following preliminary

conclusion could be drawn: Tbo-s}ep algorithms appeared to give better

reconstructions and require less computing time thaean iterative algorithms,
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I. INIRODUCTION

The band~limited signal extrapolation problem was a&dresled by several
aathors ({1] -~ [10], among others). Some algorithms for computing the
extrapolation were also given. But probably the most well-known algorithms in
the engineering literature are those of [2], [3] and [6], [8]. Although some
numerical examples were given in [6], a numerical comparison between both
algorithms seems not to be available in the easily accessible literature. In
this paper, the numerical performance of several existing algorithms are
compared by means of computer simulation examples (Section II). Then some
modifications of these algorithms are proposed for getting the extrapolation

when the given signal is contaminated with noise.

Let us recall what is meant by band-limited signal extrapolation. Assume

that g: R => C is an O-band-limited finite-energy signal, i.e.
fw =0, ¢ [-0.0,

where Q denotes the Fourier transform of g. If we are given a piece of g, g:
[-A,A] -> C, we will be able to recover g(x) for xd [-A,A]l, becanse g is an
analytic function. Band-limited signal extrapolation is the problem of
computing g(x) for all x from the known values g(x), x€[-A,A]. Several basic

models relevant to the solution of the extrapolation problem were given in [1]

(also [91).

Probably the most well-known technique for solving the problem is given

by the iterative procedure ([2],[3]):

8§, = initial Q-band-limited approximation

8y = sineg * (J[-p,a18 *+ (I-J[-a,A]) 8u-1) (1)
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where J[-A.A] is the truncation operator to [-A,A] and I denotes the identity.

Some generalizations of this procedure were given in [4]. The numerical
computation of (1) can be accomplished by means of the two following

technigues:

(i) Implementing the coavolution by using FFT

iie (ii) Sampling the iterative equation
t‘ ho = initial guess
F .
by = h,_; + sincg * Tr-a,a](8 - Byy) (2)

Note that recursion (2) is equivaleat to (1).

Technique (i) leads us to the following discrete recursion:

N-1
Toer ) =35 L aym) , 2*®/N | je(-N,N-1] (3a)
m=-N
(0 me-N, k) = (B8] ¢ |al ¢ N1
¢, (n) = J (3b)
N1 -2nijm/N
| £ p (e 2NN qal ¢k
j=-N
. . A
[ _ )
E"‘ Bn(J) =
= [ Y (i)» j==N or [Aé] < il ¢ N-1 (3c)
In formulas (3b) and (3c) A denotes the distance between consecutive samples

of g inside [-A,A]. It is to be noted that A should be chosen so that [2] -
[QHA]

n Je The convergence of this procedure was shown in [5]. Some relationships
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between the solution to (3a)-(3b)-(3c) and the solution to the extrapolatiom

problem were given in [1]. In Appendix B, we will show that the limit of the
iterative algorithm (3a)-(3b)-(3c) can be obtained by means of a certain two-
step procedure ([6]). (A related discussion is givem in [11]). Numerical

comparison between both algorithms will be given in the next section.

On the other hand, technique (ii) originates the following iterative

procedure:

S.(§) = 8,1 (§) + AkelgA.A] sincgl(j-K)Al-(8(XA)-S__ (k)  (4)
This recursion was shown to be comvergent in [6]. It was ealso sbown ([6])
that the 1limit of the procedure c¢an be computed by means of a two-step
algorithm. The relationship between this discrete technique and the solutionm
to the extrapolation problem was discussed in [7]. In the next section, the
solution given by this two-step procedure will be compared with the two

techniques mentioned earlier,

If the piece of the signal g is contaminated with noise, the situation
will ©be completely different. First, the extrapolation problem will not have
any solution (unless the npoise is also QO-band-limited). Therefore, the
problem has to be restated. Several attempts were made in this direction

(111.161).

Even though equations (1) and (2) are no longer convergent, the discrete
iterative procedures (3a)-(3b)-(3¢c) and (4) are indeed convergent. However,
the extrapolations obtained by means of the two-step algorithms are of poor
quality in the presence of noise. This shows that some sort of stopping rule

is necessary for the successful application of the iterative procedures in
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order to prevent the noise from propagating too much into the recomstructions.

We also present some heuristic results obtained by modifying the two-step
algorithms to cope with moise in the given part of the signal. This will be
done in Section III. The numerical results obtained will be compared with an
iterative Wienner-type procedure, The convergence of this iterative algorithm

is proven in Appendix A.

II. THE NOISE-FREE CASE

In practice, the case in which g is not contaminated with any noise is
pot interesting. However, if no algorithm can perform well in the absence of
noise, there will be no hope to solve the problem in cases where some noise is

present,

As it was pointed out in the Introduction, three algorithms will be used
for the extrapolation of g. Another algorithm for the noisy case will be
presented in Section III. It can also be used for the noise-free case; this
will be done in Section III.4; In our examples, the function g will be given

by the formula
R 2
sin 5 x
g(x) = (f‘n—i-->o costx, x € R
2 /

The Fourier transform of g is shown in figure O. Note that g is band-limited

to [-1,1].
We will use the following values for A; A1 =1, A2 = 1/2 and Ay = 1/4,

It is worth pointing out that there exists a fundamental difference

between the case Al' and the cases Ay and A3. When the function g is sampled
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over x = (-1,1) (say, 32 samples) and DFT of these samples are used for
II approximating g, the two peaks in the frequency space are still distinguished
. (see Fig. 1la). On the other hand, this will not be the case for (~1/2,1/2)
- and (-1/4,1/4). The corresponding plots are given in Figures 1(b) and 1(c).
l. All the extrapolations will be computed for x € (-8,8).
II.1
!f In this section we will apply the discrete iterative procedure given by
equations (3a)-(3b)-(3c). For all the cases we will use 32 samples in the
_; known range of the signal g. Therefore, 32 unknown frequency values are to be
sought. For A =1 the length of the DFT will be 256, for A = 1/2 it will be
512 and for A = 1/4 it will be 1024, Figures 2(a), 2(b) and 2(c) depict the
'. resolution of the Fourier transform obtained after 10 iterations for (-1,1),
(-1/2,1/2) and (-1/4,1/4), respect?vely. Figures 3(a), 3(b) and 3(c) show the
result obtained after 100 iterntiéns. Several conclusions can be drawn from
ll these examples. For the case A = 1, some degative values of the spectrum have

been removed and the two peaks are also more clearly distinguished after 10
iterations., (Compare Figures 1(a) and 2(a)). However, the impro;ement
obtained after 100 iterations is not significant (see Figure 3(a)). For the
case A= 1/2 and A = 1/4, the peaks are not distinguishable after ten
iterations (see Figures 2(b) and 2(c)). This situvation is the same for A =
1/4 when the number of iterations is 100 (see Figure 3(b)) and 1,000 (figure
4(b)). On the contrary, the situation improves for A = 1/2 when the number of

iterations is increased up to 1,000 (see Figure 4(a)).




II1.2

As it was pointed out in Section I, the limit of the iterative procedure
(32)-(3b)-3(c) can also be obtained by means of a two-step procedure. This
two~step procedure was also given in [6]. However, in [6], the relationship
between this procedure and the algorithm (32)-(3b)-(3¢c) was not discussed.

Let L be the following (2a+1l) x (2n+l1) matrix,

. .
L =L 5 2RUWM, gy ¢y (5
j=-n

where M = 2N + 1, The matrix L is positive definite and therefore, we can

always compute the solution x: (xh)‘ﬂ<h$n of the system of equationms:
Lx = y (6)

The two-step procedure consists of first solving equation (6) when y = (g(ka),

k= -n,...,n), and then computing the extrapolation as follows:

S -
Iy = 2rij (k-h) /M (7)
k h=-n j=-n ° " *n

where - ( k ( + », The extrapolation zy is the 1limit of the iterative
algorithm given by (3a)-(3b)-(3¢c). The proof of this fact-is relegated to
Appendix B. This way of proving the convergence of (3a)-(3b)-(3c) is simpler
than that of [5] where non-expansive properties of certain operators were
used. We have chosen anm odd number of points so that L is real. In our
examples we will ause 33 points. Figure 5 depicts the Fourier transform of the
extrapolations obtained by using this two-step procedure. Figure 5(b) shows a

much better resolution for A = 1/2 than that obtained im Section II.1 (compare




Figure 5(b) with Figures 2(b), 3(b) and 4(a)). Figure 5(c) shows the result
‘ obtained for A = 1/4, The quality of the reconstruction is good, although
some artifacts are present in the lower part of the pesks. This example also
shows how slow the iterative techmique given in Section II.1 is (Figure 4(b))
. since it should converge to the same solution. We recall that the result of

Figure 4(b) was obtained after 1,000 iterations,

II ‘3

Ve now consider another two-step procedure ([6],[8]). As we have pointed
out imn Section I, this two-step procedure will give us the limit of the
iterative approach (4). This iterative procedure (4) and some of its
generalizations were found to be very slow ([7]) and no numerical examples

using them will be included here.

Let us consider the matrix K € R(2n*1)x(2a+1)

i k(i,j) = MAMAUS) -y g4, j¢a (8)

Ve now solve the system of equations:

Kx = y, (9)

where y = (g(kA), ¥k = -a,...,n). If x = (xh)’nﬁhSn denotes the solation

(which exists and is unique), the extrapolation is computed by means of the

formula
[ Y I . .
> ngiiii Ip = 55, @i (e (10)
h=-n
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The Fourier transform of the extrapolations obtained by using this techaique
are shown in Figures 6(a), 6(b) and 6(c). It is worth pointing out that the
resolutions obtained for all the cases are very good. For A = 1/4, the
estimated Fourier transform is even better tham that of Figure S5(c) since, for

this algorithm, no artifacts are introduced in the reconstructions (see Figure

6(c)).

To conclude this section we wounld like to point out some differences
between the two-step procedures (6)-(7) and (9)-(10). Both procedares are

intended to provide approximations to the solution of the continuous

extrapolation problem. However, the nature of the two approximations are

completely different, The extrapolation provided by the two-step procedure
(6)-(7) 1is a M-periodic discrete signal; Z,, -=o(k(+= which is band limited to
(-n,n]:

N

x
k=-N

2, e 2MEIM w0, 151 > a, M=2w1
snd z, = g(kA), k {n. On the other hand, the extrapolation given >y (9)-(10)
is a finite-energy (and therefore non-periodic) sequence s, —o(k(+=, which is

band-limited to [~0A,0A], i.e.

X Sy 2™k 2o, wl > m
kn-o
and s, = g(kA), Ikl { n. It is known that if A -> 0, then the extrapolation

Sk will approach the continuous extrapolation g ([7]). On the contrary, no

similar result is known for the periodic extrapolation z,. A more detailed

discussion about four basic models for extrapolation which are related to the

IR SR S SN G NNy WU Y S S A
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two-step procedures can be found in [1].
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E o III. THE NOISY CASE

L A In this section we will discuss several techniques for solving the
extrapolation problem when the given signal is contaminated with some additive

noise. The noise which will be used is white and uniform and its values will

a range on (-0.005, 0.005), on (-0.05, 0.05), and on (-0.5, 0.5). They will be
p

called third digit, second digit and first digit noise respectively.

In what follows, we will compare the iterative procedure given by

formulas (3a)-(3b)-3(c) appiied to the noisy case with some heuristic
modifications of the two-step procedures described in Sections II.2 and II.3,
In Section III.4 these algorithms will be compared with a new iterative

[ ] procedure designed to cope with noise.

. ‘ III.1

é K We have mentioned in Section I that the iterative procedure 3(a)-3(b)-
3(c) can also be applied to cases where the samples g(kA), -n { k ¢ n are

t ) corrupted with noise,

For A=1, the algorithm distinguishes the peaks well in the noise~free

case (see figs. 1(a), 2(a) and 3(a)). Adding second digit noise to the known

r samples causes some artifacts in the recomstruction (see figures 7(a) and
S 7(b)). This is also the case when first digit noise is used (see figure
3

g 7(e)).

The solutions provided by the algorithm are almost the same as in the

noise free case when third-digit noise is added to the known samples. This is
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also the case when second-digit noise or first digit noise is added to the
original signal g on (-1/2,1/2) and (-1/4,1/4). Figures 7(c) and 7(d) shows
the result obtained after 500 iterations for (-1/2,1/2) and (-1/4,1/4)
respectively when second digit noise is present in the samples. Figure 7(f)
and 7(g) plot the corresponding Fourier transform after 500 iterations for
first digit noise. Conpa{e the results so-obtained with those of figures 3(b)

and 3(c). -

We know that the limit of this procedure coincides with the extrapolation
obtained by wusing the two-step algorithm described in Section II1.2 (see
Appendixz B). We have tried the two-step procedure givean by formulas (6) and
(7) when some mnoise is added to the samples g(kA), -n { k ( n. The results
are completely wrong due to the presemce of noise. However, the iterative
procedure seems not to be so sensitive to the noise. This is due to the very
slow rate of convergence of the algorithm, which takes 1,000 iterations to
build part of the peaks for A = 1/2 (figure 4(a)) and probably much more than
that for A = 1/4 (figure 4(b)) when no noise is present. Therefore, the first
thousand iterations will not be enough to get a reasonable approximation to
the true extrapolation if some noise is added to the given samples. It is
clear that any attempt to speed up the convergence of this iterative procedure

will also propagate the moise faster than the present algorithm.

III.2

In this section, we modify the two-step procedure given by formulas (6)
and (7) to cope with noise, The modification consists of adding a positive
number y to the main diagonal of the matrix L, obtaining a new matrizx [, then

solving the system of eqoation Lx = y and using formula (7) to get the
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extrapolation.

The motivation for this modification is two~fold. It is well known that

L is an ill-conditioned matrix; therefore small perturbations imtroduced in

8(kA), -n { k { n may produce large changes in the solution 5» - b < m,

and this may overwhelm the extrapolation: z., =N { B { N. If we add some
small positive number to the disgonal, the matrix will become better
conditioned and, therefore, the solution of the system of equation (6) will be

a8 more stable problem.

The other reason for such modification i; that the two-step procedure was
shown to be the best estimation to the extrapolation problem whem the noise to
signal ratio is added to the diagonal of the matrix K given by formula (8)
(see [6]). It is obvious that K and L are different. However, some related

optimality property might be proven whean L is used instesd of K.

Figures 8(a), 8(b), 8(c) and 8(d) show the results obtained for the case
A = 1 by means of this regularization technique., Third-digit noise has been
added to the signal. Even though the spectra are different, the sensitivity

of the reconstruction with respect to the parameter y is not large,

Figures 9(a), 9(b), 9(c), 9(d) shows the results obtained for A = 1 when
second~digit noise is added to the given signal. In this case, the sensitivity
of the recomstruction with respect to A is more evident,

Figures 9(e), 9(f) corresponds to the first digit noise case. It is worth
noting that the case given in 9(e) will be a reasonable reconstraction if the
available information about the exact bnnd-éidth is used before plotting the

Fourier transform.




Figures 10(a), 10(b) and 10(c) show the spectra of the recomstructed
signal for A = 1 when second-digit noise is used. The result obtained is not
of good quality. However, some more a priori information about the true
spectrum will be of great help. For instance, a positivity constraint applied
to figures 10(a) or 10(b) will provide a much better result. This is also the
case vwhen (first digit noise is used. Figures 10(d), 10(e) show the

reconstruction for this case.

Figures 11(a), 11(b) and 11(c) show the results obtained for the case A =
1/4 when second-digit noise is used. It is clear that the semsitivity to the
parameter A is much more critical. This is also the case when first digit
noise is added to the signal (see fig. 11(d), 11(e)). Once more, a positivity
constraint will provide a good recoastruction if A=0.000003 is wused (fig.
11(a)). Figure 12 depicts the results obtained when third-digit noise is
added. VWe would like to g-phasize that if positivity of the Fourier transform
is used as a priori informatiom, that is to say, we set to zero all negative
values in the reconstructed Fourier transform, the results are better than
those obtained when no extrapolation is performed. For instance, fig. 11(f)
depicts the Fourier transformation of the signal plus noise in (-1/4,1/4) when
no super-resolution is tried. Compare this result with that of fig. 11(d)

improved when positivity informationm is incorporated in the spectrum.

III.3

We have pointed out in III.2 that the same regalarization technique can
be applied to the two-step procedure given by formunlas (9) and (10) (see
Section II.3). Some motivations for such techniques can be found in [6]., If

we denote by K the matrix K + AI, where I is the identity, the technique

dabefN. hoafleitaneti AnAs. dhiahihi




consists of solving the system of equations K x = y (where y = (g(kA)) k =

-f8,..., 1) and using equatios (10) to obtain the extrapolation. Figure 13(a)
shows the results obtained with this technique for the case A = 1 and when.
third-digit noise is used. Figures 13(b) and 13(c) show the results obtained
for two different values of A, where second-digit mnoise is added to the
signal. The corresponding plots for (first-digit noise are shown in fig.

13(d), 13(e).

Figures 14 and 15 show the reconstruction obtained when third-digit,
second-digit and first-digit noise is used for the case A = 1/2, Figures 16
and 17 present the corresponding results for the case A = 1/4, For this

technique, we have shown the plots corresponding to the best results obtainmed.

Several conclusions can be drawn from these examples., For A = 1/4 and A =
1/2, when first-digit noise is used, it is seen (figs. 15(¢), 15(d), 17(e),
17(d) and 17(e)) that none of the values used for A provide a reasonable
result. In this case, the main conclusion is that the reconstructed Fourier
transforms are of very poor quality. (The case A = 1/4 is even worse than A =
1/2) For A = 1 and first-digit noise, the results look much more encouraging.
Taking into account the amouant of noise introduced in the observation, we
conclude that the reconstructions are acceptable. As we have remarked above
they will improve if some positivity constraint is used to remove the negative
artifacts (see fig. 13). Another important observation is that the results
obtained for A = 1/4, A = 1/2 are much better when the technique given in
II1.2 is used instead. Comparing fig. 10(e) with fig. 15(d) and fig. 11(d)
with fig., 17(¢c), 17(d), 17(e) we conclude that the two-step procedure used in
III.2 suits this numerical simulation better than that of section III.3 when

noise becomes high enough. In case of lower noise we see that the best values
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for A need to be smaller as the observationm part of the signal shrinks. In
addition, the sensitivity of the reconstructed Fourier traasform in terms of A
increases as the length of the known part decreases; for example, figures
17(a) and 17(b) show that the result may change d?atticllly. It is also clear

that a smaller A results in more positive and negative overshoots and'ringing.

Again, some a priori information may help improve the recomstruction. This
. will be the case if a positivity contraint is used because the negative

;- artifacts in figures 13(d), 14(d), 14(c), 15(b), 15(c), 15(d), 16(a), 16(b)
and 17(b) will then be removed.

III.4

e ”

In this Section, we present a new iterative techmique for the noisy case.

Ve will make use of the Periodic Discrete Prolate Spheriodal Sequences (P-

T Hui
o
I

. C .

DPSS) (see Appendix A).

Let f(m) be s periodic bandlimited signal of period 2N;1.

- |

A
f(x) =0 for U<Ixl¢N-1 (11)

where £(k) is the DFT of f(m), and U<N.

¢«

.
. Let

F,

}

3 y(m) = f(m) + n(m), for 0 { m ¢ D (12)
o

E y(m) is the observed sequence of length D. The operator T is defined as

<

g

F x(m); 0 < m<(D

r

: T z(m) = (13)
; 0 ; otherwise

jeo

w
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I.15
and the operator B is defined as the following
x(m); Ix]l < U
B x(m) = IDFT ) (14)
0 ;3 otherwise
Also for convenience, we define
(x(m) , y(m))y = NZI x(m)y(m) | (15)
n=0
1
(x(m) , y(m))y = Tz x(m)y(m) (16)
a=0

For the given noisy observation y(m), we can expand it in terms of ¢k(n)

as follows

y(m) = ﬁz: by, #,.(m) , m€[0,D-1] (17)
k=
where
bk = lllk (y(m). ’k(ﬂ))n
= lllk (f(m)n ﬁk(n))u + lllk (n(n). ¢k (ﬂ))D
= .k + 1/1k-nk
and

(f(m), pk(m))N

(n(m)., ¢k(m))D

"
#

We wish to find a set of ck's such that

el




f.(l) - zekbk’k(-) : 0 ‘ a{N (1')

minimizes the mean square error E (f-f,, £-14) 5

Using the orthogomality properties-of ¢ 's, we can write the mean square

eLror as

E (2: (ay - cxbp)? )

minimization of the mean square error leads to

2
o
. o -l x —2 (19) ‘
) k E (bkz) C: + q: —% cz 1
- k EN O e 3
- LZqz
ul k a, i
- where we bave assumed that the noise and the signal are independent.
3 ]
jﬁ Equation (19) is similar in form to the familiar Weiner filtering. In
'. practice, ci. ci. and Ai are difficult if not impossible to obtain. A
i 'k k
A possible approximation is to assume
v_' nz
F4 —E_ 4 = constant (20) ,
[ o2
s
» ¢, = 1/(1 + ;“;), (21) i
k
b
; Even with these approximations, direct solotiomn still require solving for 1
[ Ay’s. Fortunately, there exists an iterative algorithm which converges to the )
' l
T’ function given by Equation (18) when °x is given by (21).
f .
1
| ,




)
;
i
|
|
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Itorati;o Algorithm:
Let f (m) =0
fi41(m) = (1-p)f (=) + BT [BT(y(m) ~ £ (m)]] (22)
then :i:.fn(.) - kz::o 1/(1 72_) by by (m) (23)

The proof of its convergence is relegated to Appendix A. It is clear that if
there is no noise present, we obtain another algorithm for the noise-free case

by setting p = 0 in formula (22).

Figures 18(a), 18(b) and 18(c) show the result obtained with g = 0 after
200 iterations. In fig. 18(a), the Fourier transform of the extrapolation for
A =1 is shown. Tio result can be judged as good. ﬁowever. figures 17(b) and
17(c) show that the procedure suffers the same drawback as the algorithm given
in II.1: The number of iteration required to distingunish the peaks is

enormous .,

Figures 19(a) and 19(b) shows the performance of the algorithm for (-1,1)
when second-digit noise ig added to the given signal. The value used for pu
was 0.0, Figures 20(a) and 20(b) shows the result obtained by the same
procedure when u = 0,01, It is clear tbat the new value chosen for

eliminates the artifacts of figure 19(b) after 200 iterations (figure 20(b)).

Figure 21 show the results obtained by using the procedure for A = 1/2
where second-digit noise is used. Once more,the different performance between
=0 and p # 0 is clear., Figure 21 (b) shows that the artifacts of Figure 21
8a) bhave been eliminated. However, the peaks are less distinguishable. The
results obtained for the case A = 1/4 are similar to those of section III.4

and they will not be included here.
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IV. CONCLUSIONS AND DISCUSSIONS

The numerical performance of several algorithms was compared. Two basic,
assumptions were wmade: the continuous cut-off frequemcy of the given signal
is known exactly, and the Fourier transform of the signal was supposed to be
real., In the numerical examples given in Sectioms II and III the imsginary
part of the reccastructed Fourier transform was negligible. It turas out from
these namerical examples that the non-iterative techmiques (two-step
procedures) produce better results than those provided by the iterative
procedures. More numerical examples are in order to verify or disprove this
conclusion. Another important aspect of the algorithms which has to be
compared is the number of operations involved in the procedures. If 2o is the
number of given samples of g in (~A,A) both two-step procedures need 0(a2)
operations, This is because the matrix involved in the system of equations
(6) and (9) are Toeplitz and therefore 0(n2)~-algorithms are kmown for solving
the system. On the otho; hand, at every step of the iterative procedures
(3a)-(3b)=(3c) and (22) at least one FFT is needed. The length of this FFI is
N-cn2 ¢ denotes a constant; this is because the following equation has to be
satisfied: [g%g]-n. Therefore, we will have O(nzlog n) operatiomns per step.
This analysis shows that the two-step procedures are less expensive in terms
of :tithnetic computation time. However, the performance of the two-step
procedures for the noisy case depends on choosing the correct parameter A.
Therefore, the relationship between the optimal A and the noise bhas to be

further studied.

The sensitivity of all these algorithms to changes in the cuat-off
frequency has to be investigated becanse the exact value of the highest

frequency might not be available in practice.
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Aependix A

To establish notation, some properties of Periodic Discrete Prolate

Spherodial Sequence (P-DPSS) [6] are listed below.

For D >0 and U ) 0, we can find

,o(-)o ‘1(-)’ * o e 9 ‘D-l(-)p me YA

and Lo, Mo o o 0 s Apy such that

(i) BTﬁk(n) = Afp(m) ; 0 {m <N
k-O.I. OOODD.I

(1) #, (meN) = $, (m)

(111) (S (m), $;(m))y = 8y ;

(iv) B ’k(') = $y(m), ‘k is bsndlimited

(v) fe(m), k=0,1, . .., D1 form a basis in the

vector space of sequences of length D.

B and T are defined by equation (13) and (14) respectively.

VWe will now prove the convergence of the procedure (22),

Section III.A.

Let f (m) = Dfd p.(m), 0 { m ¢N. (A.1)
Y =0 k,u 'k

by substituting Equation (A.1) and Equation (17) into Equation (22), we have




.........

2
dk.n+1 = (1"‘)dk,u + kk(bk - dk.n) (A.2)
= - 2 2
(1 (u"'lk))dk’n + z’kbk
so
2
b o
4 _ = —;‘—‘(141-(;@ + ) (A.3)
’ lk-ﬂ;
chosing p>0 such that |1—(li +wl <1, or k o+ l.i <2
we have
2
ALD
. Ek
lim fu(m) = Z 2 ¢k(m), which proves Equation (23).
g-)® lkﬂ;

1
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Appendix B
We prove that the two-step procedure given b formulas (6) and (7) in

Section II.2 provides the same extrapolation as the iterative techmique (3a)-

(3b)-(3¢).

We know that the matrix L given by (5) s symmetric and positive
definite. It is also easy to prove that all its eigenvalues are less than 1.
Therefore, the solution of the system of equations (6) cam be computed as

follows:

X° = 0

Xl o x4 (3 -L3X% ,u)o (B.1)

If we also denote by L: L(k,h) the matrix defined by (5) when ke(-=,+=),

he[-N,N] and if we apply L to both sides of equation (B.1), we will obtaina

y°>=0

v°* = y% + LT(y - y¥) (B.2)

where T(y - y®)(m) = 0 if m € [~n,n] and (y-y®)(m) if m €[-n,n]. It is easy to
see that Ly® = y®, for all u > 0. Therefore, equation (B.2) can be written as
y° =0
7%l = L(y® + Ty - Ty%) = L(Ty + (I-Dy%) (B.3)

where (I-T)y%(m) = 0 if m €[-n,n] and y%*(n) if m E€[-n,n].

It is now a simple exercise to verify the equivalence of the procedures (B.3)

and (3a)~(3b)-(3c¢).
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A UNIFIED BILBERT SPACE APPROACH TO ITERATIVE
LINEAR SIGNAL RESTORATION

Jorge L. C. Sanz
Thomas S. Huang

Coordinated Science Laboratory
1101 W. Springfield Ave.
University of Illinois at Urbana—Champaign
Urbana, Illinois 61801

ABSTRACT

This paper deals with iterative solutions of the linear signal restora-
tion problem: g=Af. First, several existing techniques for solving this
problem with different underlying models are unified. Specifically, the fol-
lowing are shown to be special cases of a general iterative procedure (Bialy
1959 {1)) for solving linear operator equations in Hilbert spaces: 1. A Van
Citter—-type algorithm for deconvolution of discrete and continuous signals.
2. An iterative procedure for regularization when g is contaminated with
noise. 3. Papoulis—Gerchberg’s algorithm for extrapolation of continuous
signals ([2],[(3]1). 4. An iterative algorithm for discrete extrapolation of
band-limited infinite—extent discrete signals (and the minimum norm property
of the extrapolation obtained by the iteration [4]) and 5. A certain iterative
procedure for extrapolation of band-limited periodic discrete signals [5].
The Bialy algorithm also generalizes the Papoulis-Gerchberg iteration to cases

where the ideal low-pass operator is replaced by some other operators.

In the second part of the paper, a suitable modification of this general
iteration is shown. This technique leads us to new iterative algorithms for
band-limited signal extrapolation. In numerical simulations some of these

algorithms provide a fast reconstruction of the sought signal.
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I1.2

I. Introduction

Iterative reconstruction of distorted signals has received much attention
in the engineering literature. Many algorithms have been presented for dif-
ferent models of signals. The reader is refered to [6] for a comprebensive

review,

In this paper, we will present an approach which unifies a number of
important algorithms in the restoration of liunearly distorted signals. The
basic tool which we will use is that of iterative solution of linear operators
in Hilbert spaces. The advantages of this approach, which is based on a

result given by Bialy [1], are the following:

1. Several apparertly disconnected algorithms, some of which have recently
received much interest, can be considered special cases of Bialy’s itera-

tion.

2. All these algorithms can be shown to be convergent using a rather general

tool.

3. A simple generalization of the basic iterative procedure will be shown to
pcovide some new restoration algorithms which perform fast reconstruction

of the sought signal.

Section II reviews some fundamentals of 1linear operators im Hilbert
spaces. Special emphasis is p.it on pseudoinverse solutions and Bialy's itera-
tion for non-negative symmetric operators. In Section III, we show that th:s
iteration can be wused to obtain the iterative procedures meationed in the
abstract of this paper. In particular, we obtain a generalization of the
Papoulis—-Gerchberg algorithm for the <continuous extrapolation problem. In

Section IV, we show how a simple generalization of Bialy's iteration provides

| W
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some useful recursive techniques for restoration. Some numerical examples
showing the performance of these algorithms are presented in Section V, where
the application problem 1is continuous band-limited signal extrapolation. A
numerical comparison of these algorithms with the Papoulis-Gerchberg procedare

is presented.
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II. Basic theory

Let us recall what is meant by bounded and compact linear operators in

Hilbert spaces. Let H,, H, be two Hilbert spaces and A: Hy -> Hy a linpear
operator. We say that A is bounded (also continmous) if there exists a real

number C such that

HA <tl, < ¢ 11zll; for a11 x € By
where || lli denotes the norm in Hi'

The operator A is called compact if it maps every bounded set S C Hl onto a
set A(S) whose closure A(S) is compact. In other words, A is compact if and

only if for every bounded sequence {xn, n €N} C H}, |fhere exists & subse-
l-

; ¥y, k =) =, The reader

quence [xn » k €N} and y € Hy such that A(x, )
k k

is refered to [7] for further theoretical details.

Obviously, if a linear operator is compact it will also be bounded. The
converse does not hold in general. Eowever, if Hz is of finite dimension both
class of operators coincide. The adjoint of A is another linear operator At:
B, -> H; characterized by the following identity:

(Aty, x> = <y, Ax>
B By

where < , >H. denotes the inner product. A linear operator A: H -> H is called
i

symmetric if A = At. In that case, we say that A is non-negative if <Ax,x> > 0

for all x € [I. We concern ourselves with iterative solutions to the linear

problem Ax = y, where A: Hl -> H2 is bounded and y € Hz is given,

& L ]
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1I.5

Frequently, it happens that y does not belong to the range of A and
therefore, thre is no x: Ax = y. In that case, one may attempt to find the
minimum norm least squares solution. However, for infinite-dimension spaces
this approach is npot always successful because the "least square” solutions
may fail to exist. We need to recall some related results for our applica-

tions.

It is well-known that the range of a bounded operator may not be closed.
The situation is even worse for compact operators since it can be proved that
the range of such an operator is “almost never” closed. Undoubtedly, this
#~ - result is the main drawback for a pseudoinverse approach to solving the opera-
tor equation Ax = y, because most of distortion equations in signal processing
are given by compact operators. The following lemmas, which are proved in ref.
é‘ [8], help in understanding the matter, and will be useful for the remainder of

our paper.

Lemma 1

* [ Let A: 51 ~-> Bz be a linear bounded operator. For a fixed y € Hy, let S =

—

{x €H: Ax = Qy) and N = (x € By: A®Ax = A%y}. Then S = N. (Q: K, -> A(Hp)

is the projection operator onto the closure of the range of A.) The equation
Atax = Aty is recognized as the normal equation for A. It is obvious that if
Qy does not belong to the range of A: R(A) then N =S = ¢, Therefore, since

R(A) may mnot be closed, there exists many points y € Hz; Qy € R(A). In other

Py

words, N will not be empty iff y € R(A) + R(A)1 (1 denotes orthogonal set).

oy

e . -
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Lemma 2

For a fixed y € H,, the set of least squares solutions

(v € H . llAw - yll = inf (1]Ax - yliI, x € g1}

coincides with the set of solutions of the normal equation AtAg = Aty.

From the comments given above, it is clear that the set of least squares
solutions will not be empty if and oanly if y € R(A) + R(A)L, In that case,
this set will be closed and cornvex and therefore, there will be an element u =

A+y which has minimum norm among all which satisfy Atau = Aty.

Another simple but very important property is the following:

Lemma 3

If y € R(A), then A+y is the minimum norm solution of the linear equation

Ax = y.

Lemma 3 says that if a solution to the problem Ax = y exists, then the
minimum norm solution will make sense and will coincide with the generalized
inverse A¥y. This is a very simple consequence of the fact that y € R(A)
ensures that the normal equation AtAx = Aty has the same set of solutions of

Ax = y.

One would like to have pseudoinverse solutions for every y € HZ' Bow-
ever, as we have shown above this will be possible iff R(A) is closed. In that
case, the generalized inverse A*: Hy -> H, is a well-defined bounded operator.
The boundeness of A' shows that finding a pseudosolution A+y is a stable prob-
lem, i.e. small perturbations in the data will produce small changes in the
pseudosolution A+y. As we have mentioned above, this will be "almost never"”

the case if A is compact:
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11.7

Lemma 4

If A: 31 -> Hy is compact and R(A) is closed then A is degenerate, i.e.

R(A) is of finite dimension.

Some examples of compact operators may clarify the matter. Let us suppose

that our distortion can be written either as

a
gly) =/ hi(x,y)f(x)dx, y € (-b,b) (for all f: } I£(x)1%dx < =)
-a -a

for a continuous model or as

g(m) = ¥ h(m,n)f(n), m € Z (for all f: ¥ lf(n)l2 { »)
n €7 n €Z

for a discrete model.

In both cases, under rather general conditions on h it can be shown that

the corresponding distortion operator is compact. Sometimes, the situation is

even worse because the range is not only non-closed but also dense (i.e. R(A)
= 52). In practical terms, this means that if the given data g is contaminated
with some additive noise n, the problem becomes intractable from a generalized
inverse point of view. This is because R(A)'l = {0} and therefore, A+g will
never exist if the noise has any component which is outside of R(A) (this is
almost always the case). An example of dense range is provided by the set of
band-limited functions, with a fixed bandwidth 2. It is well known that this
set is dense in the set of finite energy functions over an interval [-a,al]

(see {9]1,[2]). We hope to shed more light on this problem in section III.2.

In what follows we will state the Bialy iteration which is also wuseful
for computing generalized inverse solutions of Ax = y. This iteration is the

main core of the next section, and provides the basic toel for the announced
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unification of algorithms.

To this end, if A is a bounded linear operator, we denote by ||All the
infimum of the numbers c¢: ||Axl| < cllxll, for all x € 31. We also denote by

P the orthogonal projection onto the kernel of A: Ker(A) = {x € HI; Ax = 0}.

Theorem 1 (Bialy, [1])

Let A: H =) H be a linear bounded non-negative operator. For y € H, z, e

H consider the iterative process

xn+1 = x, + a(y - Axn_l) (1)
where 0 < a < 2/11All.

Then, the sequence {xn. n ) 0} converges if and only if Ax = y has a

solution. In that case X, =) Px, + X, where x is the minimum norm solution.
n-)e

We would like to maké some remarks about Theorem 1. It is clear that if
the initial approximation X, is zero then {x,} will approach the minimum norm
solution of the equation Ax = y. The theorem also says that this will happen

iff the equation has at least one solution.

Judging from the appearance of (1) it may be said that recursion (1)
tries to compute a fixed point of the mapping Gx = ay + (I - aA)x. However, it
cannot be said that the fixed point and/or the iterative procedure make sense
because of & contractive property of G. In fact, this situation will almost

never occur. The reason of this assertion is given by the following.

Lemma 5

If A: H -> H is a bounded linear operator such that iteration (1) con-

verges for all y € H for some x,, and a # 0 then A cannot be compact, unless H




II.9

is of finite dimension.

The proof of this lemma is relegated to the reader. Lemma § says that if
A is a compact operator and the dimension of H is not finite (and therefore,
including most of the cases we are interested in) recursion (1) must be diver-
gent for some y. In particular, I - AA will pot be a contraction mapping

irrespective of the choice of A.

A relevant characteristic of the hypotheses of Theorem 1 is that A is
assumed to be non-negative, excluding apparently many operators for which this
condition is not met. However, Bialy'’s theorem can be used to compute itera-
tively the minimum norm least squares solution of any bounded linear operator.
This result will be obtained very easily if we recall that the minimum norm
least squares solution (whenever exists) is the minimum norm solution of the
normal equation AtAx = Aty. Then, Bialy’s theorem can be applied because AtA

is 8 non-negative linear bounded operator. Thus, we have:

Theorem 2

Let A: H) -> H, be a bounded linear operator. y € R(A) + R(A)l. consider

the iterative equation:

X =0

x = x g o+ Aty - Ax 1), n 31 (2)

t
where 0 < a < 2/11A%All. Then [xn} converges to the minimum norm least s~ uares

solution A+y.

It is worth noticing that Theorem 2 assumes y € R(A) + R(A)! and there-

fore, the sought generalized inverse solution A+y exists.

T e T
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To end this section, we would like to point out some results which are
connected to those of Theorem 1 and Theorem 2. Two special cases of Bialy's
theorem were prcved earlier for integral operators, which are a case of com-
pact operators arising very often in practical applications. In 1956, Fridman
([10]) proved Theorem 1 for the case: A is given by Af(x) = fi. h(x,t)f(t)det,

f is any finite energy function, i.e. f € Lz(-a.a). and the kernel h is posi-

Ty

tive (and symmetric: h(x,t) = h{(t,x)). In 1951, Landweber ([11]) proved

a
Theorem 2 for the case: Af(x) = -{ h(x,t)f(t), removing the assumptions made

on h(x,t). In both cases, h(x,t) must define a compact operator, a condition

that is often met.

Py

E A final remark is in order; it can be easily obtained from Theorem 2 and

E the discussion on pseudosolutions presented in this section, that iteration

3

#‘ (2) will appraoch the minimum norm solution of the equation Ax = y, whenever y

f- € R(A). To see that we just recall that {(x € le AtAz = Aty) = (x € Hl; Ax = ‘
E y} for y € R(A). In particular, if the solution exists and is unique it will :
i! be also obtained by the procedure (2). ’
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III. Applications

In this section we will show several applications of the results dis-

cussed in Section II.

III.1 Van Cittert-type algorithms.

¥e now consider a continuous-continuous deconvolution problem. Let L2(B)
denote the Hilbert space of finite energy functions defined on B, i.e. L2(B)

= {f: B - R: fB If(t)lzdt { ®»}, Let b be a function such that the following

linear operator is bounded:

A: L2(8) -> L(T)

£ -> Af(t) = Is h(t-s)f(s)ds, t € T

(If T or S is bounded, and b satisfies fsfilh(s-t)lzdet { @ then A will be

bounded. In that case, it can be proved that

[1agll ¢ UeSrln(s—t) |2dsat}/2 [1gl]
w3y - 8T L2(s)

where |lyll stands for the norm {fBIY(t)I . Another case for which

L2 (B)
A is Dbounded will be obtained if the function h has compact support, that is

to say, h(s) = 0 if s £ C where C is a compact set in R",)

If S=T, JS denotes truncation to S and h satisfies the additional pro-

. 2 N n A .
perties J |p(t)]“dt < = and h(w) ) O for all w € R", where h denotes Fourier

RD
transform, then A is a non-negative operator. To see this,
AL, £ = [g(Af) (s).f(s) = [ (h*Jgf) (s)Tgf(s)ds
L2s)y °° gn O s

where the symbol * stands for convolution, defined over R"™. By means of

Parseval’s equality, we obtain <Af,f) = [ (geref) (W) (Taf) ] (mydw. But
t2(sy rt° 3
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(o3 £)(w) = B(w . (TgH)" (w), then <Af,f) = [ 2w . 1" (2w, which
S § 13(s) g S
is always non-negative.

We now assume that g(s), s € S is the output of our continuous system
defined by A. If we are interested in recovering the input f(s), s € S, we can

apply Theorem 1 to obtain a sequence {fn] given by

fn+1 = fn + c(g - h.Jsfn) (3)

which converges to the minimum energy signal that produces the output g.

Another way of writing equation (3) is
fn+1(s) = f,(s) + a(g(s) - fsh(s—t)fn(t)dt). s €8,

or equivalently, fn+1(5) = ag(s) + (fn(s) - afsh(s-t)fn(t)dt).

This is a Van Cittert-type recursion whose convergence 1is ensured.
Several remarks are in order. Perbaps the most important observation is that h
may have zero frequencies without affecting the convergence of the procedure.
It is also clear that many choices of a can be tried whenever 0 < a < 2/|]All
(if S is bounded we can chose any ¢ which satisfies

0 <ac¢ 2/[fsfq!h(x-t)|2dxdt]1/2).

The classical Van Cittert’s algorithm is for the case S =T = R". It is
this assumption what makes the proof of Van Cittert’'s iteration (3) so simple
if @ is chosen to satisfy |1 - aﬁ(w)l ¢ 1 whenever g(w) # 0 ([6]). Therefore,
if S # R®, under the more stringent condition %(w) > 0, Bialy's iterati~- pro-
vides a non-trivial extension of the classical version of Van Cittert's algo-

rithm.
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We next consider a discrete-discrete deconvolution problem. In this case,

the wunderlying Hilbert space is 12(3) = {a.: m € B, T la |2 { =»}, where B
n m €B »
is a subset of Z™. Let h(m) be a sequence such that the operator

A: 12(8) ’) 12(C)

x(m). m € zn = Z h(k‘m)x(m)p k €C
m € B

is bounded. Several conditions on h, similar to those given for the continuous

case, can be found to ensure the boundness of A.

If h satisfies ¥ lh(m)|2 ( @, B=C and the Fourier series of
m € z°

h: > h(m)EZ"m“ > 0 for all w, then Bialy's theorem will apply. Thus, the

m € Z7
iteration

(k) - (k) _
x a(g(k) h*Jpx _1(k)), kK €B (4)
will converge to the minimum norm solution of the problem: g(m) = (h*JBf)(m),

m € B, provided that at least one solution exists. Equation (4) can be written

as follows

x (k) = ag(k) + xp_5(kK) _ s h(k-j)xp_1(j), k € B (4")
j €B

A
with 0 < @ < 2/|/All. A simple rationale for choosing a is 0 < a < 2/(suplhl).

Equation (4) (or its equivalent form (4’)) is a Van-Cittert’s recursive
formula, when the model for the observed and unknown signals are both

discrete.

It is worth noticing that equation (4') can also be written by wusing an

operator—-type notation:

e



II. 14

xE) = ag(x) + ((5 - ab)*Ipx _J(x), x €B , (3)

where 6: Z® -)> C: 5(0) =1, &6(k) = 0 if k # O.

Recursion (5) was also considered in [6] for the special case in which B
is bounded. Under this assumption, equation (5) was showp to converge in ref.
{12]. However, in [12] it was also proved that if B is bounded a can be chosen
independently of B so that (6 - ah)‘JB is a contraction mapping under mild
assumptions on h (which include the case %(w) >0 for all w € RM"). We think
that it is now understood what is the theoretical importance of the a priori
constraint that the sought signal is limited to the set B. From lemma § and
related discussions, it is seen that (5 - lh)‘JB will be a contraction mapping
for a certain A and for a rather general h only if B is bounded. On the other
hand, if B is not bounded, equation (5' was shown to converge to the minimum
norm solution of the deconvolution problem (Theorem 1), but the contractive

property of (5 - Ab)*J; will not hold in general.

To conclude this subsection we would 1like to emphasize that for the
continuous-continuous model, if the set S where the input signal f is not zero

is bounded, (I - ah)‘JS will not be a contraction mapping in general. This is
a major difference between the continuous and discrete model, lz(B) is of fin-

ite dimension if B is bounded whereas L2(S) does not have this property.

II1.2 Pseudoinverse regularization

The deconvolution problem that was discussed in Section III.1 usually

requires a more 1nvolved solution due to the following facts:

1. g is given with noitse and therefore the solution to the problem g = Af

may not exist.

|




A
2. h may not satisfy h(w) > 0 for all w.

3. The period of time where the observation g is given: C may not coincide

with the support B of the sought signal.

A full answer to problems 2 and 3 and a partial solution to 1 will be given in
this section., To this end, we will show the convergence of an iterative recon-
struction algorithm. We will consider the discrete~discrete model only. Simi-
lar comments and results hold for the continuous-continuous case. With the
same notation as in Section III.1, let us suppose that our observation g(m), =
€ C is given with noise. Assume that g € R(A) + R(A)L. Then, the following
problem will always have a solution: AtAf = Atg where A' denotes the adjoint

of A (see Section II). For the convolution case:

(Af)(m) = I h(mk)f(k),
X €B

m € C then, (Atq)(k) = T h(-k+m)q{m), kX € B, This means that AY is also
m € C —_—
given in terms of a convolution where the new kernel is h (-m). Specifically,

AtA is given by

(AYAf) (j) = 5 ¢ h(m-j)b(m-k))f(k), j €B
€

z
k€B me€C

which is always non-negative, as it was pointed out in Section 2.

Thus, we can apply Theorem 2 for computing the minimum norm least squares

solution of Af =g, if g € R(A) + R(A)l. by means of the iteration:

X =0
= Ip_p * aAt(s - Axm—l) m ) 1 (6)
where 0 ¢ a < 2/(|]A||2).
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An equivalent expression for (6) is obtained by replacing A and At
xo = O
k€B, x(x)=a & BmDg@ +x_ (k) -a I ( £ EaBa@j) i)
m€C j€B m€C

(6")

It is worth peinting out that equation (6) or (6') will not converge if the
noisy data g € R(A) + R(A)!. However, we think that this approach is useful
for understanding the iimitations of the technique and for setting a condition

to ensure convergence or divergence of che iteration.

A particular case is obtained for B = C = Z", In that case, the technique
that consists of convolving the equaticn h * f = g with h(~m) has been pro-
posed independently by several authors ([6],[13]) but the approaches used were
conceptually different. For B = C = Z", the operator AtA is given by a convo-
lution whose kernel is h(m) * h(-m). Then, the transfer function of the system
AtaA is 1B(w 12, w € R®. Since lg(w)l2 is always non-negative, Van-Cittert'’s
algorithm applies to the equation [h(-m)*h(m)]*f = h(-m)*g, obtaining the fol-

lowing frequency-space recursion:

A
x,(w) =0
Lw = odfmtm + - afiNHT _ (1)

i.n is, of course, equivalent to (6’) wh. B = C = Z", It is worth pointing
‘74t there should be a solution to the problem h(m)*f = g in order to

:nite-energy discrete signal whose Fourier transform is the limit of

~+. urove, the pseudoinverse approach provides a full answer to

ind C are any subset of Z™, and the convergence of (6) is
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characterized in terms of the data g.

To end this subsection we would like to remark that if g € R(A) + R(A)d
then (6) will not converge., Therefore, cauntion is recommended when the itera-
tion (6) (or (6')) is used for theoretical derivations. On the other hand,
when (6) (or (6')) is implemer‘sd numerically, a finite piece of the signals
is wsed and therefore convergence of the iteration is guaranteed. The concep-
tual point 1is that for implementation purposes, the underlying model for the
distortion is g(m) = (h‘IBf)(m). m € C where both B and C are finite. Then,
the pseudoinverse solution will always exist and can be approximated by means

of (6').

IIX.3 Papoulis-Gerchberg'’s iteration

Let us assume that g: F =) C is a piece of a Q-band-limited function

. L\
(i.e. g(w) = 0, w £ Q) where F # ¢ is an open subset of R". Let us suppose
that the complete function g satisfies the finite-energy constraint:

I 1ag(x)1%dz ¢ =.
Rn

Papoulis [2] and Gerchberg [3] proposed the following algorithm for com-

puting the continumation of g or its Fourier transform:

8, =0

o
|

= sian‘(IFg + (I—JF)gm_l). m>1 (8)

where sincp denotes the function whose Fourier transform is the indicator of

Q.

In ref. [2], equation (8) was shown to be convergent to g in the energy
norm {or the one-dimensional case. In ref. [14], anothker approach was shown to

prove convergence of (8) which is also valid for the multi-dimensional «case.

[
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However, in [15], this algorithm was presented as a special case of
Landweber’s iteration ([11)). The underlying operator equation is (Af)(x) =

g(x) where A is an integral operator given by
(Af) (x) = [ f(w)e 2Ti¥%3y, 1 € F (9)
Q

f € Lz(ﬂ) and Q is assumed to be bounded. It is obvious that the sought solu-

A
tion is f = g and is also unique. We can now apply Theorem 2 to get a recur-

sion:

f =0

fo= f.1 + aAt(g - AL 1) (10)

where 0 < a < 2/(I]AtAll) and A% is the adjoint integral operator given by

(Ath) (w) = th(x)eZ"iwxdx. w € Q.

It is very easy to verify that [latall € 1; then, @ =1 is an admissible

value and from (10)

f =0

fo = fp1 * At - Af 1) (10")

will converge in the energy norm to the unique solution f of the -equation

(Af)(x) = gi{x), x € F. But in that case, ;m => ; also in the energy norm (Vv
m-)w

denoti~3 inverse Fourier transform). Since fn‘ f>are supported on Q, ¥n(x) = f

fh(w)p—ﬁwixwdw and z(x) = [/ f(w)e-ZKiwxdw, x € R". We now apply inversg

caasform to both sides of (10?):

"< Mg
[t}

0
v + U / —2nixwdw)e2n1x.dxfl (11)
m fo-1 . (g(z) - A fm_l(w)e
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v
If we call g = f , m > 0 we will obtain the recursion

8, = 0

By = Bpy * sincg*(Jpg - Jpgp) (11"
Since 8y is Q-band-limited, equation (11') is equivalent to the following:

8, =0

m = sincg*(Jpg + (I-JF)gm_l), m 21 (12)

Equation (12) is the Papoulis—~Gerchberg iteration (8).

We will pow show a generalization of (8) to cases where the low-pass con-

volution is performed by some other operator.

A
To this end, we need to assume some further information related to g = f.
A
Let us suppose that for certain non—negative bounded function h(w), w € Q,

A
h(w) = 0, w £ 2, g satisfies:

|g(w)|2

dw ( = (13)
a ﬁ(w)

Then, if we consider the operator A: L2(9) -> L2(F):
8172(,) . e27i%Is(w)dw, x € F (14)

(As)(x) = [

Q

(As)(x), x € F will have a solution in LZ(Q) {(which is

the equation g(x)
obviously g/ﬁllz). It readily follows that the solution is also unique. We can
now apply Theorem 2 to the equation g(x) = (As)(x), x € T for A given in (14)

to get an iterative procedure:

- t(g -
fp = fpgq *ad™ (g —Af ), m )1 (15)
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which converges to the unique solution. More specifically equation (15)

becomes

f =90

[+]

a0 = £, (0 + a8 2(me2™iV2(g(x) - [/ 2(2)e72RX2E  (5)dz)ax
F Q

(15°)

If we now multipy both sides of (15') by 71/2(w)e2rivy, integrate respect to

w € Q, and call g (y) = [ fm(')ﬁllz(w)e-Z"i'ydw, we will obtain
Q

£, =0

Yy E€R% g (y) = gy (¥) *+a Iy B 2™ Vawi(g(x) - gy (x0)ax  (16)

If we call h(z) = fﬂ ﬁ(w)eZKi'zdw. equation (16) will become

g8, =0

By = 8y—3 * ah(-z)*Jp(g - g5 4)» 2 1 an

which converges to g uniformly over compact sets in R", when 0 ¢ a <

2/(sup|ﬁ(w)|) and (13) is satisfied.
w

Two well-known discrete algorithms for extrapolation can be considered a
sampled version of equations (8) and (11’') (see [16],[17]). In addition, some
new algorithms for solving the discrete extrapolation problem ([18]) can also

be interpreted as a sampled approximation of equation (17).

III.4 Iterative extrapolation of infinite—extent discrete signals.

Let F vpe a finite subset of Z™ and z(m), m € F a sequence of numbers.
The discrete band-limited extrapolation problem consists of finding an infin-

ite sequence y(m), m € Z" such that y(m) = z(m), m € F and y(m) is QO-band-

limited, i.e. y(w) = > ny(m)e—Znimw =0 if w £ Q@ (a fixed bounded set of
m € Z

Aciad

L. .
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frequencies @ C [-1,1]" (see [4]1,[16],[17],[18]).

The solution to this problem is non-unique ({6],i4]). In ref. [4] it was
shown that the minimum-norm discrete extrapolation y can be computed by means

of the following two-step procedure:

1. solve for x: b2 sincn(k—m)x(m) = z2(k), kK €F (182a)
m €F
2. compute T sinc(k-m)x(m) = y(k), k € Z" (18b)
m €F

Then, it was shown that y can be computed by the following iterative algo-

rithm:

y, =0
k€2Z% y () =y, () +a I sincglk=j)(z(j)-y_;(j)), m > 1 (19)
J €EF
for 0 ¢ a < 2. (Both results were extended for arbitrary multidimensional F
and 2 in [18]; for a relationship between this discrete solution and the con-

tinuous extrapolation problem given in III.3, see [18].)

Perhaps, the earliest reference to the technique given by (18a)-(18b) is
Yao [19] who addressed this problem under a rather different name and by using

a quite general approach.

The fact that iteration (19) computes the same sequence as that of
(18a)-(18b) is very simple. In this section, we will show that the iteration
(19) can be obtained from Bialy's iteration for a certain operator equation
problem. The minimum norm property of the limit sequence will be readily

derived as a byproduct.

Let A: L2(2) => 1,(F) be the following linear operator:
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(Af) (m) = [ f(w)e2™ i ™4y, m € F
a

It is clear that A is bounded when L2(0) and lz(p) are equipped with the norms

b2 Iz(m)lz respectively. It is clear that the discrete extra-

m €F
polation problem can be put in this equivalent way:

l1£(w) |%dw and
Q

find f € L2(Q): (Af)(m) = z(m), m € F (20)

From Parseval’s formula, it is seen that the minimum norm extrapolation
corresponds to minimizing ||f||2 where f satisfies (20). We can now solve (20)
by means of Bialy’s iteration. To this end, we need to compute A, It is sim-

ple to verify that, if s € lz(F) then

(Ats) (w) = s(m)e 2Mi™ o € [-1,1]",

2
m €F
Thus, Bialy'’s iteration given by Theorem 2 becomes

f,=0 (21)

£ = f,_1(w) +a k% (z(k) - £ £,q (2)e2"i2kaz)e72MIkY, y € g,

F
and £ converges to the minimum norm solution of (20) in the L2(2) norm.
Therefore, fﬂfm(w)eZ“iWkdw,k € Z" approaches the minimum norm Q-band-limited
extrapolation y(k), k € Z" when m -) @ in the 12(2") norm (Parseval’s for-

mula). Then, if we call Yu(k) = fnfm(w)eznikwdw.k € Z", equation (21) becomes

Yo = 0

kK € ZM, Yp(k) = ypq(k) + a ; % . sincg(k-j)(z(j)-yp_1(§)), m 21 (19)

and convergence to y(k), k € Z" is ensured for 0 < a < 2.

i m——
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A final remark is in order. The operator A given by (20) satisfies R(A) =

12(F) because F is finite, therefore iteration (21) or equivalently (19) will
always converge to the minimum-energy solution of the problem. This means that
the algorithm does not distinguish signal from noise.
III.5 Xterative extrapolation of periodic discrete signals.

Another related discrete approach to band-limited extrapolation is to

solve the following problem:

Given z(k), k

“k ,....ky <N

Find y(k), -N < k < N:

y(k) = z(k), -ko Lk <k

N .
T ye 2miEn/M oo, o) 5 (22)
=N

where M = 2N + 1.

In this case, the band-limited property of y(k), -N ( k { N is given in terms

N ] N
of the discrete Fourier transform (DFT): Y y(k)e—ankn/d‘
k=—N

In ref. [5] the following iterative algorithm for computing the extrapo-

lation (22) was shown to be comnvergent:
yo(k)=0p —NSkSN

(ﬁn(k), -k, <k <k
|

y = IDFT . (23a)
\C, otherwise

0

rz(k), -ko <k <k

where ﬁn = DFT (23b)

Yatk), Tkl > kg




ey

(IDFT stands for the inverse discrete Fourier transform given by

N .
/M Y x(x)emikn/M 5 o N LN,
k=-N

It is clear that procedure (23) incorporates at every iteration the
information available in both time and frequency domains. In ref. [5], the
proof of the counvergence of this recursion was done by means of a certain

nonexpansive property of aan operator in CM.

In this section, we show that (23) can be also considered a special case
of Bialy’s theorem. Perhaps, this is the simplest of the examples presented in

this section because of the finite dimensional nature of the underlying Hil-

bert spaces.

2k,+1 2k, +1
Specifically, let A: C ->C given by the IDFT operator:

.x :
(Ax)(n) = & 5% zoemikn/M oy
k=k

o

It is obvious that problem (22) can be restated as that of finding a vector x
2ko+1
€C such that (Ax)(k) = z(k), -k, (k ¢ k,. It is known that this system

of equations has a unique solution. We can apply Bialy's iteration (2) for

computing the solution x. So, we obtain

xo(k) =0, -ko £k g ko
X =x,; +aAf(z-Ax ), n21 (24)
where a can be chosen as 1. (Here, At is transpose-conjugate of A.)

We now take M-length IDFT on both sides of (24) to obtain
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k
z

Yolk) =y 1 (k) + & o2nibk/M Ko —2nibm/M (,(m)

EA -yn—l(m)) (25)
m=-k°

b=k
-N <k N,

It is easy to verify that (25) can also be written in the following way:

T e

k
. N _o.:
¥ (k) = S e2mibk/M 2nibm/M (3
n M k
k=-k° m=-N o

z + (I-J’ko)yn_l))(m) (26)

where Jk denotes truncation to [-k,,k.].
o

It turns out that recursion (26; is the same as (23a)-(23b) and there-

fore, the convergence of yn to the sought extrapolation is ensured.

In the derivation presented above it was assumed to simplify notation

that the length of the DFT is odd: 2N + 1.

The advantage of this approach to interpreting iteration (23) is that it
is possible to characterize the convergence of a similar procedure when the
number of samples in the time and frequency domains is not the same. In such a
case, it is obvious that the extrapolation problem has no solutions or an
infinite number of solutions. In both cases, the corresponding equation (26)

will provide the minimum norm least squares extrapolation.
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In this section, we show that some extensions of the Bialy iteration can

be useful for obtaining new algorithms for signal restoration and extrapola-

tion.

In ref. [20], we presented the following iteration

f =0

Lo
[

te.
f,, +DAS(g - Af ), n 21,

and we related it to the numerical continuation of analytic functions.

27

Let us

assume that A: H -> H, is a bounded linear operator, g € R(A) + R(A)! and D:

R(A®) -> R(A%) is a bounded linear symmetric operator which is assumed

to be

one-to-one (i.e. ¥x: Dx = O then x = 0) and such that DA%A is non-negative.

Under this assumption it can be easily shown that lim § = §f where f
n- )«
minimum norm least squares solution of Af = g, if D is chosen so that

< 2.

In case A is compact, the condition DAtA is non-negative may be
terms of the eigenvectors of AYA. This case was extensively analyzed
The effects of different D’s on the speed of convergence of iteration

also studied ([21]) for the compact case.

is the

| Ipatall

put in
in [21].

(27) was

We will next show how iteration (27) can be used for obtaining some gen-

eralizations of the Landweber-Papoulis-Gerchberg’'s algorithm discussed in Sec-

tion III.3.

To this end let us call A: L2(Q) -> L2 (F) the compact operator

Section III.3

(Af) (x) = [ g(w)e~2miwigy, 1 € F
Q

s . L. - D S ) - P U PR U P -

given in

(9)




-

11.27

Since A®A is another linear non-negative compact operator there exists a fam-

ily of eigenvalue-eigenfunction (Li,ﬁi) i=1,2,... of AtA such that:
AAg =2 8, n=1,2
n unﬁ ] P e s

(see [71).

A sufficient condition on D for ensuring convergence of iteration (27) is

the following (see [21]):
a. D¢n = pn¢n, n=1,2,...

b. p satisfies 0 < p A < 2 for all n.

c. P n=1,2,... is a bounded sequence,

It is interesting to remark that the operator AtA is given by the integral

kernel: sinc, and therefore # , =n=1,2,... are the prolate spheroidal wave

functions ([9]).

Many operators can be chosen to satisfy conditions a, b and c. In [21],
it was shown that it is sufficient to pick D = G(A'A) where G(A) is a polyno-
mial or rational function such that 0 < AG(A) < 2 for O < A (1. If D is to be
so chosen, (27) will converge in the Lz(Q) norm to the solution of the problem
(Af)(x) = g(x), x € F, where g: R® =) C is assumed to be a Q-band-limited
function. If we now apply inverse Fourier transform to both sides of (27) we

will get the following recursion

8,(x) = g _;(x) + [g e TIME DU TN (g(2) - g, (2))d2) (wdw (29

Observe that when D = I, (28) becomes the Landweber Papoulis-Gerchberg algo-

rithm. Equation (28) shows a quite general version o¢of this <classical




situation.

In the remainder of this section, we will present some numerical simula-
tion results comparing the generalization (27) with the classical iteration
(10’). To this end, let us define

2

sin n/2 x
) cos nx

8: R > R: g(x) = ( 277 x

The Fourier transform of this signal is plotted i; Fig. 1. If we take the
interval F = (-1,1) as the known part of g, a fairly reasonable reconstruction
of the Fourier transform can be obtained by means of Discrete Fourier
Transfcrm (DFT) of 129 samples. This result is plotted in Fig. 2. It is clear
that the two peaks are easily distinguished. Or ..e other hand, if F = (-1/2,
1/2) the situation will be completely different. Figure 3 plots the result
obtained for DFT of 129 samples in (-1/2, 1/2). This means that restricting
the known part to (-1/2, 1/2) represents an irretrievable loss for the appli-
cation of the naive inversion technique. In other words, by means of DFT of
samples of g on (-1/2, 1/2) the outstanding features of the spectrum of g are
lost. Therefore, we think that g: [-1/2, 1/2] => R is a reasonable test exam-

ple for our numerical simulations.

We first apply the Landweber-Papoulis-Gerchberg iteration. Figure 4a
shows the very poor result obtained after 20 iterations. Figure 4b plots the

reconstructed Fourier trunsform after 500 iterations. In this case the

We now apply the more general procedure given by (27) for three different

1. D= (Ata + yp1
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For this operator (27) is closely related to the Twomey~Tikhonov regulariza-

tion method. In this case, iteration (27) becomes:

f° = 0

(AtA + yl)fn = yfp_1 *+ Atg, n 21 (29)

It is worth pointing out that y should be chosen positive. In that case, AtA +

vI is always inmvertible.

Figure 5a shows the result obtasined after 10 iterations when y = 0.00005,
and Figure 5b plots the reconstructed Fourier transform after 20 iterations
with the same parameter y. In both cases the reconstructions are of good qual-

ity.

Fixing a value for y and determining the number of iterations are by no
means trivial matters. By comparing Figures 5a and 5b it ii seen that the
reconstruction is quite sensitive to the number of iterations d es. We think

that the sensitivity depends also on the parameter y.

Figure 6a shows the result after 10 iterations obtained by applying (29)
when vy = 0.005. Figure 6b plots the corresponding result for y = 0,005 and 50
iterations. By comparing Figures 5a and 6a it is seen that the reconstruction

is very sensitive to the parameter y when the number of iterations is fizxed.

Figure 7 shows the reconstruction obtained for y = 0.000005 after 10
iterations. It is clear that for a fixed number of iterations the smaller the
parameter y is, the more distorted (due to the propagation of round-off

errors) the reconstruction will be.

In spite of some unanswered questions, the mair conclusion that can Gv

drawn from these examples is that the resolution obtained ir Figures a4, ¢
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6a and 7 is much better than that of Figures 4a and 4b.

2. D = F(AtA) and F(A) = 804.375A6 - 300375 + 4504.504 - 346523 + 1443.75.2
- 315\ + 31.5

Some reasons for choosing such a D are well documented in [21]. We think
that this example is also useful to realize that the reconstruction is very
sensitive to the choice of D. For this D, Figure 8a shows the result after 10
iterations., It is seen that the resolution is poor. However, Figure 8b plots
the reconstructed Fourier transform for 200 iterations which is a good result.
This means that the procedure is slower compared to those given where D = (Ata

+ 71)—1.

It is also remarkable that by using a fewer number of iterations than
those necessary for the classical Landweber-Papoulis~Gerchberg algorithm

recursion (27) provides a better reconstruction (compare Figures 4b and 8b).

3. D = F(AtA) and F(1) = a6,

This case is intended to be an example where the speed of the reconstruc-

tion seems to be similar to that of the classical approach (9)-(10°).

Figure 9a shows the recomstruction obtained after 500 iterations. By com-
paring 9a . and 4b is is seen that the results look much the same. Figure 9b
plots the result obtained after 1,000 iterations. By comparing 9b with 9a it
is noticeable that the reconstruction of the Fourier transform was improved at

the cost of double computational effort.

It was assumed, so far, that the given signal is not contaminated with
any noise. Since the techniques presented in 1 and 2 above represent a sub-

stantial improvement of the classical iteration procedure (8)-(10') it is
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expected that the noise will also propagate much faster in the recomstruction.
Therefore, a stopping rule is of great importance for practical applications.
It is also important to analyze what is the performance of the iteration when
the known range of g is smaller. Some related examples and further analyses

are given in [23].
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ABSTRACT

This paper deals with the numerical continuation problem of analytic functions
g(z) given by g(z) = jc‘ll((z,t) f(t) dt where K defines a bounded operator on
LZ(CD. It is assumed that g is known over a finite segment A of the real line
where g is to be sampled. Our continuation techniques emerged partly from

a generalization of the Lindweber iteration. We show that a certain discrete
approximation of the proposed iterative technique yields two-step (non-
iterative) algorithms for solving the continuaticn problem. We also prove
convergence of these approximations'to the sought function g. Special
emphasis on the continuation problem for the case K(z,t) = e—2ﬂizt is given
and some related numerical examples are presented. The continuation problem

when the known part of g(z) is contaminated with some noise is addressed and

some techniques for solving this problem are also provided.
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I. INTRODUCTION

Let us suppose that we are given a piece of a n-dimensional signal
g(t), tG A SR, In addition, we assume that g is obtained from some

other signal f(x), x&{2, through a linear space variant system,

g(t) = fK(t.x) £(x) dx , terR", (1)
Q

where K is known. The goal is to recover the "real" object £(x), x€(,
from a finite set of §amp1es of the "observed'" signal g(t), when t € A.
This problem is very well known in the engineering literature ([1l]) and it
has been extensively studied in the mathematical literature ([2]).

A very important case is obtained from (1) when K(t,x) = k(t-x),

t,x eRr". In that case, g and f will satisfy the following relatiounship:

Q(w) = lt(w) . T'E(su) R weR"

where » denotes the Fourier transform and TF(x) = f(x) if x€&€l, and O

elsewhere. It is clear that

A
EL“& = ﬁ(w) s for all w: /l\c(w) #0
(w)

Let us assume that lt(uJ) # 0 for w € N, where N contains a non-void open set
of R". Since TF has compact support (if Q is compact) then 'I"\F is analytic;
so the knowledge of 'ﬁ'(w), when W e N, will be enough to determine '1"‘}'(«9)
for any other we]Rn. In many applications, ’I?F(ul), uJé.]Rn will describe
by itself all the information that we need from TF. If this is not the

A
case, then we should proceed to compute Tf from TfWw), we€ R". However,
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we have assumed, so far, that g(w) is known exactly for all weR". This
will not be the case if g(t) is observed on the set A ,‘Rn, or on a finite
subset of A only. This shows that if we can improve our knowledge of g
(i.e., to know g(t), when t ¢& A) we will obtain a better knowledge of 2
(i.e., to compute g(w) more accurately).

In many cases, ﬁ(w) = 0 if w EN, where N is éssumed to be compact.
Therefore Q(w) = 0, w €N, which assures that g will also be an analytic
function. This means that the set of values g(t), t € A will determine

g(t), t € A. This shows that the solution £ to the equation

g(z) = [k(z-x) £(x) dx
Q

can be approached by solving a continuation problem for two analytic func-
A
tions: g(z), given z € A, and TF(w), given w &€N. 1t is important to notice

A
that the continuation of TF can be stated in the sense of equation (1)

since
A -2
TF(w) = fe 2TXW £ ) dx
Q
-2Mixw .
and e plays the role of K(w,x). This latter continuation proolem

shows an example of the importance of including space-variant kermels in our
discussion.

One motivation for the continuation problem we give above is the
restoration of £. However, there is another motivation: In many cases, we
are interested in obtaining knowledge of g(x), when x € A, and x is "close"

to A. Some examples of this situation are known, in multidimensional signal
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processing. Let us suppose we apply a filter to a given image. The filter
n ideally performs over an infinite extent image. However, in practice we are
given only a piece of the image. When the filter is applied to points close
to or on the border of the real image, inaccuracies will result, if we assume
l- some arbitrary numbers for the unknown values of the image (e.g., the image
~ is assumed to be periodic; or a constant number is assumed for the unknown
values). The filter would improve its performance.if we could fill out the
- unknown values of the image with some interpolated information. Thus,

small amounts of extrapolation (i.e., to extrapolate a small region beyond

the boundary of A) can be of great help.
In the following sections we concern ourselves with the continuation

of the function g, when g is given by the equation

g(z) = IKQJ)HOdL z&R" (1)
Ci
and g(z) is known for z € AS]Rn.
One possible approach for getting a continuation of g is to solve
equation (1) in terms of f£f and to use the same formula (1) to obtain the
continuation of g. We will use the Landweber-Strand ([3],{4]) iterative

procedure to get the solution of equation (1):

fo = initial approximation,

*
= - £ 2
£ =€ _ +DK(g-K ) . ()

*
where X denotes the adjoint of X and D is a certain operactor ({&4]). 1In

section II, we will extend (2) to cases where K is not compact and D Iis anv




suitable positive operator, including Strand's iteration ([4]) as 2 special

case. If we apply K to both sides of equation (2) we will get

*
g, = 8, +KDK (g~ sn_l) 3)

g, initial guess ,

where g8, = Kfn is a fgnction defined on the whole R".

Under rather general conditions for K and £, recursion (2) is =nown to
be convergent. On the other hand, we will also prove that the segueace 8,
approaches g uniformly over compact sets in c®. Practical computation of 8,
requires equation (3) to be sampled; this means that discretizatioz eof g, 8
and KDK* are unavoidable. In this paper, we will show that certaiz natural
discretization provides an iterative procedure which is also convergeat to a
sequence. This sequence can also be obtained by solving a system of aquations
where D plays an essential role. This system of equations provides a2 natural
interpolation for the sequence by means of an analytic function. <we will
also prove that this analytic function apprvaches g uniformly over ccmpact
sets when the distance between samples of g on A tends to zero.
Thus, we will obtain a reliable technique for continuating g(z), tecause
the closer the samples of g are taken on A, the better the approxi-=ation
to g(z), when z € A. It turns out that our continuatioa technique dces
not require the computation of the derivatives of g. Section IV which con-
tains the main results is derived independently of Landweber-Strani's iteration.

However, Landweber-Strand's iteration is the origin of the main ideas developed
in this paper and therefore, section II is fully devoted to this i:terztive

procedure and our generalization. Section III shows the relationships between
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Landwebher-Strand's iteration and our continuation techniques, which are
presented in Section IV. Section V includes some numerical examples for the

case K(x,y) = e-21l'ixy

. In section VI we present the continuation problem
for the case in which the observations are given by Z(x) = g(x) + nx), x € A.
Here, 7 denotes a continuous perturbation such that ‘Vl(x) \S € for some € >0.

All our results are presented for the one-dimensional case. However, exten-

sions to the multidimensional case readily follow.

II. LANDWEBER-STRAND'S ITERATION

In this section we present Strand's iteration in a more general setting
than that of [4]. Let K : LZ(Q) —'LZ(A) be a bounded linear operator. Let
g & LZ(A) be a function such that g = 8, + 8y where g1 € R(X) and g, & R(K)’,"
(R(K) denotes the range of K). In addition, let D : R(K*) ——R(K*) be a
bounded linear symmetric operator which is assumed to be one-to-one (¥x : Dx = O,

*
then x = 0), and such that DK K is non-negative.

Theorem 1

Under the conditions stated above, let fn be defined as follows

= * -
fn fn-—l +«DK” (g Kfn—l)
fo = any initial guess € LZC‘_) (&)
2 +
0L X & s x - £
Let us suppose that DK Then, fn converges to (I P) to + £,

. =+ -

wnere £ is the mininum norm least squares solution of Kf = g, P is the
. . L L ‘

orthogonal projectiom on N(K) = {v € Lz(ﬂ) : Xv = O} and I denotes the

identity.




Proof

This theorem is a simple consequence of a general result (Bialy {5])
for bounded operators on Hilbert spaces. Let us recall that our assumption
g €R(K) + R(K)'L ensures that the problem Kf = g ha; a least squares solu-
tion ([6]). It is also known that the set of least squares solutions is
{x : K*kx = K*g)}. This means that we need to pick up the minimum norm solu-

tion for the operator equation

E. %*
KKx = Kg (5)

Since D is supposed to be one-to-one, equation (5) is equivalent to
* * '
DKKx = DKg = g (6)

*
Since DK K = H is a symmetric bounded linear and non-negative operator,

Bialy's conditions [5] are satisfied and therefore the iteration

L

L
£, 0= 8, *x@=HE ,) (7)

fo = any initial approximation

converges in the LZ(QD norm to (I - P)fo + f+, where f+ is the minim'm norm
solution for the consistent equation Hx = g, provided that 0 &{ « LIf%“([S])'

It is also clear that (7) becomes

*
£ = £, + DK (g~ KE )

n n-1 1

We can include the relaxation parameter into D. In that case, convergence
*
of (4) is ensured if DK Kl £ 2. Strand ([4]) considers equation (4) for

some special D and assuming XK to be a completely continuous operator. If




the latter condition is satisfied then the singular value theory for compact

operators will apply to our problem. In that case, if ¢; denotes the family
*

of eigenfunctions of KK, forn : 1, 2, ..., and ln its corresponding

eigenvalues:
KK = A\, n=1l,2, ...
n n'n
Strand's conditions on D become
D¢n = pnan, n=1,2, ... (8a)
where P, satisfies

0 < pn)h & 2 for all n, (8b)

P,r B = 1, 2, ... is bounded (8c)

It turns out that condition (8a) ensures that DK*K is non-negative. It is

also clear that (8b) is equivalent to ﬂDK*K“ £ 2, and condition (8c¢) ensures

that D is a bounded operator on iTE*E). These conditions allow for a partial

study relating D to the behavior of the approximation (4) after n diteratioms.
Under the more general situation stated in theorem 1, some rational

expressions in K*K may play the role of D. Similar analyses to those of

[4] are expected for this situation. However, this goes beyond the scope

of this paper. 1In what follows, we will restrict our attention to cases in

which K defines a bounded intagral operator.
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III. APPLICATIONS TO THE CONTINUATION PROBLEM

We remarked in the introduction that the iterative procedqte (2) can
be used for getting the continuation of certain analytic functions given by

the formula

g(z) = fK@J)f&)M, z&R
Q

where K defines a bounded operator: LZGD)‘-LZ(A) and g is observed on the
set A. It is clear that if we define 8, = Kfn’ where fn is given by (2),

we will obtain the recursion

%*
g, = 8., tKK(g-g ;)

= £ -
g, 0= K‘o’ fo 0 9)
Since fn converges to f+ where f+ is the minimum norm solution of the equation

g(z) = J[.K(Z.t) f(t) , z €A,
Q

and since the convergence is in Lzﬁi), then g, converges to g in LZ(A). We

now state the following result:

Corollary

Let us suppose that K satisfies these additional properties:

1 J(K(z,t) h(t) dt defines an analytic function for z € C and any

Q
2
h € L7(7.
(2) sup lK(z,c)lz dt £ C_ <« e for all compact sets | & C.

r <

zeIT Q




Then, the sequence g, given by (9) converges uniformly over compact sets in

C to the continuation of g(x), x € A for complex arguments z € C.

Proof

Since g, = Kfn is also an analytic function over the complex plane,

and fn- £ LZ(Q) we have by means of the Schwartz inequality:

——

lg - )@ | &g -l [flxcz,c)iz at]®e cre
Q

for € arbitrarily small, n z-no(i) and I' a compact set in C.

Some particular operators allow a bound (as the type of that given by
(2) in the Corollary) which depends only on
sup [Imz| .
zel
In that case, convergence is assured to be uniform over the real lina. This
- . -2Mizt
is the situation for K(z,t) = e . Some consequences of this Corollary
in signal processing are given in [7].
Realistic applications of this iterative continuation formula involve

*
discretization of g, g, and the operator KDK . Applying naive quadratures

*
formulas for the integral K (g - gn—l) we will obtain the following recursion:
for any k € Z:

N r -
S, (k) = 5, (kd) +°(A.;NI.KDK(iA,')} k) - (g(1d) - - _,(10)) Q0

i(x,y) is the complex conjugate of K(x,v) and the dot in E(iﬁ,') indicates
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the variable with respect to which D is being applied on T(.; A 1s a positive

2a
2N+1

is a relaxation factor independent of n. It would be desirable that

number used to sample 2N + 1 times the function g on (-a,a) : & =

and &

Sn(kD = gn(kk); however it is obvious that the sequence Sn(k&). kel is
not obtained by sampling 8, Two problems arise from the discrete recursion
(10). The first is related to the convergence of the sequence Sn when n-o ,
The second problem is abqut the relationship between this discrete technique
and the original continuation problem. More specifically, the quewtion is whether
lim Sn(kA)
o - -]

will approach g when A — 0. Both problems are addressed in the next section.

IV. ALGORITHMS FOR THE CONTINUATION PROBLEM

In what follows, we will assume that K(x,*) € LZ(Q) for all xe A,

*
D=0D is positive definite, and defined over the whole LZ(A). Under

these conditions the discrete recursion (10) will be derived by means of a

rather different approach. Let us consider the following matrix L

L : lij’ -N él,jéNo

Ly = DR R@EL,D HUN 1y

It is simple to prove that L is a hermitian matrix, i.e. Zij = jS for all

i,j. If we assume that K has the following additional propertcy: !

N .
Y c,K(i4,x) = 0, for all xe{ « ¢, =0, i=-N, ..., N
i=-y
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then L will be positive definite (without condition (12) L is non-negative).

This shows that the system of equations

Le = d,

will always have a unique solution for any d & CZN+1. In particular, we can

find xi. i = -N, ceey N that SatiSfy
N

b Y (@ EGA)HIEADY

P P = (KE)(1d), -N& i 4N (13)

It is also worth pointing out that after “{j is found in (13) we will have a
natural interpolation formula for g(i8), by means of an analytic function,

i.e.,
N

g2 = A ) (®@EELDIIDY

(14)
; ]
J=“N

Let us show how this approach relates to recursion (10). Since L is a posi-
tive definite matrix, then Xj, -N & § £ N can be obtained by means of the

following well-known iterative procedure:
¥® = 0D gy - Ll (15)

ol a certain positive relaxation parameter and

‘li = lim Xin), for all i € [-N,N].

Ne~x

We now apply A(KD K(i8,*) Y(kd), ke Z , to both sides of formula (15) to get

. < @ _ A (a-1)
A Y R &Y = A Y @ K Y&y ET

i==X i=-N

1=

+&D )0 Reih) ) ). gl - i) (1)
i=-N




-

..............

If we call

N
(n) e A . -
s (k) = LY.’ = AigN(m R(14,) HWBY. ke,

equation (16) will become ‘

N
S, (kB) = s (kb) +x4 ) (k0 K(14,°) ) (kD). (8(14) - 5__, (18))
{==N (10) -
Since X(n)-. ¥ when n--o, then Sn(kA) converges when n-e-a and k is fixed.
Moreover, we have proved that
lin S _(k8) = gk, for all keZ.
n IO Y
We have shown, so far, that sampling iteration (g) produces a point-
wise convergent sequence which can be computed by an exact technique. This
procedure consists of two steps. We first solve a system of linear equations
(13), obtaining Yi' i=-N, ..., N; then, we use Xi, to get an analytic
function gA(z), z € C which interpolates the set of samples g(id), i = -N,...,N,

where 1A €A for all 1 € [-N,N]. This function is given by equation (14):

N

sA(z) = A jaz_N (XD X(38,°) )Fz).Kj

The remainder of this section is de&ocad to showing the relationship between
SA(Z) and g(z). We will need some lemmas.
Lemma 1

Let (hm)m be a family of analytic functions over C" and let us assume

that (hm)-n is uniformly bounded over compact subsets of c" (i.e., for all

ANt asa
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compact sets I'C c® there exists a constant ¢ : sup lhm(z)\ & CI for all m).
zel

Under these conditions there exists a sequence hmk, k--o and certain analytic

function h such that h_ converges to h uniformly over compact subsets of’Cn.

For a proof of this well-known result see, for instance, [8]. In what fol-

lows, we will show that g , l= 2a satisfy the hypothesis of lemma 1,

. ZN+1

when D and f satisfy some additional conditions. We will also need another

previous result from the optimization theory in Hilbert spaces.

Lemma 2

Let (H, <,”> ) be a Hilbert space. Let x ., -N <& 1 & N be 2N+1 linear

i

independent elements of H and cye -N 4 1i4& N be 2N41 complex numbers. Then,
the following optimization problem:

minimize <£x,x7> (172)

subject to X € H

(x,xi>= cy» -N<&£i&s N (17b)

is uniquely solved by

o N

x> = ) B ox (18)

where ﬁi are determined by solving the system of equations:

‘Bi(xi,:cj) = Cj sy N4 j&N (19)

H g P

i=-N

For a proof of this lemma see, for instance, [9]. 'e are now able tc srove




Theorem 2

Let us suppose that D satisfies: there exists m > 0 : {x,Dx> » méx,x)

for all x & Lz, and assume that there exists a function £ 61.2 such that De = £,

In that case, the family of analytic functions gA. A - ‘z%:Tf given by formulas

(13) and (14) is uniformly bounded over compact subsets in C.

Proof

We will use lemma 2 where xi 'Al’ E(iA.') and Ci = g(1d), -N & i 4 N.

The underlying Hilbert space is LZ(Q) equipped with

{x,y>, = fx(w) Dy () dw.
Q

Under these conditions, the optimization problem (17a) becomes

minimize .fh(u.\) (Dh) (W) dw
Q

subject to h eLz(ﬂ)
% -fh(w)D[K(iA.')] (w) dw = g(id)
Q

for -N &i& N
It turns out that the solution to that problem is
) bk N
¥ w = A* Y P K(18,0) ,
i==N

where Pi satisfies

A.

BLK(jA, @), K(1Aw)>, = g(id) , -N&i¢
3

y 3

B

(20a)

(20b)

(21)

(22)
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By definition of ¢, g, condition (22) becomes

N
A Y BdXGA,) YA = g . -Nétex
J=-N
. This last system of equations coincides with (13) and therefore, Pj = Xj’
-N & j§ & N. It is also important to notice that gAcan be written as follows
%% &
g.(z) = A*[X¥ (W) DK(z,*) (w) dw (23)
- A
' Q
where ¥° is the optimum given by equation (21). Since D¢ = £, for certain
= Le LZ, the function A—k.e is a feasible point for the optimization prob-
lem, that is to say, A-;i.e satisfies condition (20b). Hence,
' f ¥ () DYO(w) dw & A‘lfe (W 2w dw (24)
9] Q
because ¥° is the "minimun-norm" function among those which satisfy (20b).
Now, the sought property of the family gA readily follows from (23) and (24).
._ From (23) we obtain

lg (2] & jf.nx°u,_.un k(z, ) I, (25)

. Using equation (24), and the assumptions made on D and K, (25) becomes

lgA(z)l Q(I((w} D (w) clu.:)L5 l\D\lz(flK(z,t)lz dc)!i . —1; (25"

m

If we now assume that z€ 1 a compact set in C, equation (25') becomes

lgA(Z)\é cI, for all ze 11,

where CI? depends only on L.




_____
________________

We are now able to apply Lemma 1 to obtain

Theorem 3

Let

’

. ) |
g = Aj_Z_ij(xn K(38,*) )(z) » z&C ., A-ﬁ%

be the analytic function obtained with the condition

N .

We1&N: A ¥ (D KGADIUN = gUh) =~ ®OWY) (13
J==N

Let us assume that D and K satisfy all the conditions stated in Theorem 2.

In that case, there exists a subsequence Am- 0 where m -~ @ such that 3A

m
approaches g uniformly over compact sets in C.

Proof

By lemma 1, there exists a:subsequence Am- 0 and an analytic function

An

addition, h = g because g 1is a family of equicontinuous functions (a simple

h(z), such that g, approaches h uniformly over compact sets in C. mn

consequence of the uniform boundness) and therefore, since g

Am(1.Am) = g(iAm)
when -[Za/Am] 414 [Za/Am] and the set of numbers iAm : 04&meoo,

-[Za/Am] &1 & [Za/Am] 1s dense in‘ (-a,a) we conclude h(z) = g(z) for

z € (-a,a). Since both functions are analytic, the same identity holds for

z€C.

)

We would like to remark on some important points and to give some L

examples before ending this section.
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*
The property that DK K 1s positive was not used in the proof of Theorem 3.
l’ On the contrary, this property is required for the recursive computation of £

by means of formula (2). It is worth pointing ocut that we have used, so far,

equally spaced samples of g(ill) where A = 2§il . However, similar results
" to those of theorem 2 and theorem 3, and different formulas for interpolating

samples (as (14)) can be obtained for non-equally spaced samples and for
other regular distributions. It is also easy to see that we could have used

ha the following sampling sets:

{11\‘11(, 0Lkim; =N &i&N; ANk= 2\{—11 }

where Nk is a non-decreasing infinite sequence of natural numbers. In that
case, by means of theorem 3 we would obtain a subsequence of Nk’ k=1, 2, ...,
x say'éav n=1, 2, ..., such that geh approaches g uniformly over compact sets

in the complex plane. If we repeat this procedure for every non-decreaasing

infinite sequence of natural numbers we will conclude the convergence of
II gA} to g, where AN = E%%f » and N is any natural number. This observation
iinmportant because it means that our approximation to g over a compact set,
by means of gGV will be good for all N ?>No if it is good for No. This obser-
vation also ap;Iies to more general sequences of sampling sets.

We now give some specific examples of operators which may play the role

of D in the continuation technique. Probably the simplest case is D = I, the

~ identity operator. 1In that case, the interpolation formula (14) becomes

= A
. sﬁ(z)

A D2

/— 3
KXGA, D/ (2 Y, (26)
j==¥ ’

' e
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where ’(j are chosen to satisfy gA(iA) = g(1d), 1 = =N, ..., N. Another

example is D = (K*K +°(I)-1, where & is a real positive number. More gen-

erally, if P, denotes the polynomial

k
ok i -
Pkﬂ) - iZO ail » where a, >0, a, >0

*
then D = PR(K K) will satisfy all the conditions required by theorem 3 and

so does D-l. The examples given above satisfy R(D) = Lz(m. This property

‘ensures that £ € R(D) for any £ € LZCQ) whatsoever. In particular 41f f {s

such that Kf = g, we will have £ € R(D). Hence, no relationships between f
and D are needed to apply theorem 3. Unfortunately, this is not always the

case. The other property which D is required to satisfy is
I n>0: 4Dx,x>3méx,x> for all x & L3(Q) 27

This assumption is by no means mild. Simple positive operators may not have

this property. For example, let us define
2 2 P A ) )
D:L°(Q) -L°(Q) : (DO)W) = h(w).(w) (28)

A
where h is a bounded, real and positive function. Even if f € R(D), that is

to say

‘l-ﬁ-ﬁz < O , (28"

D may not satisfy (27) and therefore, the hypotheses of theorem 3 may not be
satisfied. However, the thesis of that theorem still holds. To show that,
let us assume

|

[Z

Lo

dw (29)

|




which is, in fact, a weaker condition than (28). Then, the analytic function

. g can be written as
N s, £ £ .2
| f g

A 3
where DLi : LZ(Q.) — LZ(O) : (Dlil) (w = h!i(w).l(u)). We now call H =KD~
and we apply theorem 3 when K is replaced by H (notice that H is an integral

operator) and when no D is present (i.e., D = I). We obtain the interpolation

(26): N
gp(2) = Aj;_NHEﬁA.-) () ¥,
- or equivalently
N —-—
g (2 = A J_;_N KD K(38,°) (2) ¥, (30)

which is the formula we should obtain in theorem 3 applied to this situation.
The great flexibility in choosing D shown in theorem 3 may be useful
t in two different ways:
1. Some more a priori information about g (or £) may suggest picking
up some D's to get closer interpolation formulas. The numerical

evidence of the next section gives an example about this situation.

2. The noise problem. When g is contaminated with some noise, the
effect of D may be of great importance, especially when the svsten
of equations (13) is solved iteratively. This has been shown tc be
the case when we deal with the iterative procedure (2) for ccmputing

f (see [4]). Some numerical preperties of related techaigues for

solving the problem in the presznce of ncise were recently raported

=2Tixe
in 13] when XK(x,t) = e .

To finish this section we weoull like to point out that another

P . o B deas e . e “ﬂ-----.-i-i-.-.---I---l--J
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interesting question remains unanswered: What are the additional conditions
that £ and D should satisfy to get an approximation result such as that of

theorem 3 when D is any positive-definite linear operator?

IV. NUMERICAL EXAMPLES AND DISCUSSION

We will consider in this section some numerical examples for the case
K(z,t) = e-Zﬂizc. The special interest in this particular operator is well
known and we tried to explain some of the reasons in Sectiomn I. .

In this situation, interpolation formula (14) becoumes

N :
5y = by ¥, [e-foizx p(e2™xidyy, (31)
=N ,

The case D = I was addressed in [12]. However, in ref. [12] it was also
*
assumed that g € R(K K) to derive the corresponding interpolation formula

and no relationships between g Aand g were shown. On the contrary, we do not

need any further restriction on g than g € R(K), that is to say,

g(z) = ff(t) e-ZT\'izt dt, z €A
Q

and since the kernel satisfies all the properties required by theorem 3 we
also know that ZA — g uniformly over compact scts. In ref. {10] it was

shown that for this particular situation the convergence of g to g is uniform

A
over the whole real line.
2
If we assume that D is given by (28) and if ng- dw < @ where
h

A A
h : R—R is bounded and h(w) = 0 if w ¢{), then we can apply formula (30)

to obtain:




s

N
g (2 =0 } ¥ (i) (32)
A j==N

In this situation, the system of equations we need to solve to compute Xj,

j =-N, ..., N has the following form .
N .
gid) = A ) ¥ BCGE-DD) (33)
j=—N .

It turns out that the matrix involved in (33) is Toeplitz and therefore,
o((2y + 1)2) algorithms can be used for solving the system. We have develcped
an iterative approach for solving (33) whose relaxation parameter does not
depend on the number of points inside A (for 0 fixed), when A is varying

(fp.

Our numerical experience will be based on the following functions:

2

. 0N
s:.niz _
(-——————- cos llz s zeC

L.
2

gl(Z)

_ sin 2T(z-k) sin 2M(z+%)
23 = TG f Twes

z€C

2

g3(z) ) ’ z €EC

sinTz
Tz

it is clear that these functions are analvtic and tiey can be written as
r -2Wizx
/ f(x) e dx
%9,

with £ & L7(Q) and 1= (=1, 1). The interval (-0.3, 0.5) is assured as cthe
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get of known values. We will take 33 equally spaced samples in (-0.5, 0.5)

with 4 = 1 for each case. The continuation will be given by means of

33°
65 equally spaced samples of g A'(z) taken in (-1, 1), corresponding to the
points z = 14, 1 €.(-32, 32].

In the first case, gl(z) is given by the integral

0.5
f fl (w) eﬂz]r:wz dw
-005 -

where fl is drawn in figure l.a. The set of 33 samples of g, is given in table

l.a. Figure 1.b shows the function 8, in (-1,1). These samples provide a very
poor description of the spectrum of g(x), x € R, because their discrete Fourier

transform (DFT) does not distinguish the corresponding pair of peaks. The DFT

is shown in table 1.b and in figure 2.2. Compare this with the DFT obtained
when the 33 samples are taken in (-1,1) (fig. 2.b). In this case we have

chosen D = I and therefore, g is given by (32) with

sin 2Mx

h(x) T .

Table l.c shows the values of the continuation g(l) (i8), 32 2zlil » 17,
A

A= 3%- . Table 1.d shows the real values gl(iA), 32 2|1l > 17. It is

seen that the continuation is of good quality. We now compute the DFT -of

the sequence defined by the given samples gI(iA), 0&1il £16 plus the

(1)
A
1.3. Notice that the two peaks are now distinguished very clearly. This

continuation samples g (i0), 32 » lil 2> 17. The result is given in table

example shows the importance and effectiveness of the continuation procedure.
The second case is intend~d to be an example of the effectiveness of

the algorithm when the main peaks of the function to be continuated are not

completely included into the known range (fig. 3). In this example, we use
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*
D=KK+ I, where <= 0.5. The function obtained by means of the formula

KD(i(x,'))(z) can be written in this case as

0.5
‘[; S sincl.o(z-y) sincl.o(y—x) dy + 0.5 sincl.o(z-x) (34)
where
sin 2Mw
Sincl.o(w) = —-1—‘_-“)— .

The function obtained by the continuation procedure is sampled, giving

2
54
g, are listed in table 2.a, and the real values gz(iA), 32 »>1il 2 17 are

)(iA), 32 2111 > 17 .(table 2.b). The values of the known samples of

given in table 2.c. The conclusion that can be drawn by comparing tables 2.b
and 2.c is that the continuation procedure performs a fairly reasonable
extrapolation. It is worth noticing the accuracy obtained at the main peaks.
However, these peaks are still close to the known range of the given function.
Further numerical evidence is necessary when the location of the peaks is
more critical.

The third case is to provide a rough comparison of the performance of
two different D's. The function g, (fig. 4) is to be continuated from its samples:
g3(iA), 0 £<til &£ 16 by means of D, = sincl.o(x-y) and D, given by (34).

Table 3.a shows the known samples. Tables 3.b and 3.c list the values of

both continuations. Table 3.d contains the real values of taken on the

B3

same points at which the continuations are sampled. It is seen that the

continuation provided by D, is closer to 8, than that ¢f D, om most ¢¥ the

2 1

sample points. This phenomenon is not yet rfully explained.

Probably the main conclusion that may be drawn frem these examples is




that 33 samples of the given function was always enough to get a quite reason-
able continuation. It goes without saying that this result is due to some
peculiar properties of the given‘functions 8;° g, and 84> in terms of the
chosen D's. A deeper study of these properties might shed more light

on the role played by D in the continuation technique.

‘IV. CONTINUATION AND NOISE

We have assumed, so far, that our samples of g, taken on A, are not
contaminated with any noise. However, a more realistic model should consider
that the given observations are 'E(x), XE A, where g = g +1M. It is clear
that g and 1] cannot be separated. In general, '1 is not a smooth noise and
therefore, we need to change the formulation of the continuation problem
because g i3 not a piece of some analytic function. We will assume that
N: A-=-Cis a continuous ‘function which satisfies {q(x)\ (€, for all x € A,
where € is some known constant. Under these assumptions, we could seek for
a function h(z) which is given by fK(z,t) s(t) dt, for all 2z €¢C, s éLz(Q.)
and such that ]'é'(x) - hix)[ ¢ &, fo? all x € A. It is obvious that this
problem has a solution. However it may not be unique and therefore, h will
be different from g. This means that in the absence of any other a priori
information about g, the continuation of g from § becomes a de..cate matter.

Among the infinitely many functions which may play the role of h
(i.e., which satisfy the two conditions stated above), we may put some addi-
tional constraint to the problem to guarantee a unique solution: he:for all

€ > 0. The only restriction we should impose to the additional constraint

(in the absence of some more a priori information about g) is that the

i w—_——_——J




solution he approaches (in some convenient way) the true function g when

tends to zero. This convergence must involve the values of g veyond A.

In this section, we develop a technique which will use the following three

constraints:

he(z) = fse(t) K(
Q

Ihe(x) - B) | &€ ,

s_ = L2 minimizes <s

among those which satisfy (35a) and (35b)

In formula (35¢c), D denotes a linear, bounded operator which satisfies

{Dx,x> » mdx,x> for all x, with m > 0.

t,z) dt , z & C
for all x &€ A

8% = fs(t) (Ds) (t) dt

(35a)

(35b)

(35¢)

We will give a procedure to compute

‘he and we will show that hezapproaches g uniformly over compact sets in the

complex plane when g(z) = '/k(z,t) £(t) dt, z € C and D& = f for some L €L

Q

Theoren &4

Let K be an integral operator satisfying the properties stated in

2

theorems 2 and 3. Let D, g and g be as defined above, and let us assume that

f = D¢ for a certain l & LZGJ).

we define

N
h(Z)=ANZX

N A

where Xj, j=-N, ..., N is the optimum of the following problem:

N
minimize E: Yj - B,

§==N

subject to:

2a

If we take & = =="— | for all N 2> 1, and if

N 2N+1

j KD K(j%,') (z) , z€&C

3

(36)

(37a)
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N -
i| &y 32-1« ¥, K K(3A.) (14) = By, N&i1sw -G
‘ [B, -8ap [6€, -wg14w (37¢)

Then, there exists a subsequence A“k H h%“ approaches he uniformly over

compact sets in the complex plane, where he is defined by conditions (35a),
(35b) and (35c).

Proof

We will follow the same ideas as those of theorem 3. It is clear that
h 1s well-defined because condition (35b) defines a closed convex subset
of 1‘..2((')). It is also clear that hAN is well-defined and that condition (37¢)

can be rewritten as
NLL4N lhAN(:LAN) -sidpy |4 e -

It is also possible to rewrite

: ¥
PR
as follows:
N N N (%
- X, ¥ |K(34,,t) D K(kA, ,*)) () d
j-Z.;N Pyt j-Z-N kZ:-N i L 38y Ao ) ¢
N N |
= fj-Z-N *(j K(34,¢c) - D( ng%'kK(kkd,-,O (t) dc *
Q
N N :
-<3Z:-N ¥ K34, j;N YjK(jAN.‘))D 4

— _ .. J




L Cn A SER YD e alien on

I1T.27

and therefore, the optimization problem can be restated by using lemma 2

as follows

minimize <s,szb (38a)

subject to

s2t?: N&1aw, [Ls BFRUALD - s1h) [ e (8b)

It is also important to notice that hAV can be wirtten in the following way:
I\

n (2 - Aij s3(e) - D[K(z,-)] (t) de : (39)

o
-

where S§ is the optimum solution to the problem (38a), (38b) which is given

by the formula

N
s5(6) = A 2 B RGheo . ceQ
j=-1
By means of (39), we obtain
. 1 —
lhANm[ & af - lsgly LD R, 0, (40)

1.
Since f = D¥, Q_GLZ(Q), then A ‘€ also satisfies condition (38b). From

(40) and the other properties assumed for D aand K we conclude

m

¥
IhAw(z)ls (f?.(t) D&(t) dc) Aol . __12 - C
' Q

where

1

2 3

CI' = sup ([[K(z,c){ dt:> , a comprct set in C.
ze.. .

Q

We now apply lemma 1 to the sequence h, , N 0 to get an analytic Ifunction

oY

bninamneln & “*‘M
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€ 11128
86 which is a uniform limit on compact sets of a certain subsequence h,
k32 0. It is clear that 8¢ satisfies i ge(x) - 'g(x)[ &€ forallx€ A
because hAN is an equicontinucus family, {1AN. -N<1L4 W, AN ZN 1 } is a
dense subset of A and '1 is continuous. Therefore 8¢ satisfies (35b).

Since

hANk(z) - A;2 fsnk(t) D[K(z. )] (t) de,

and
% co
then
g.(z) = f(Ds;) (t) K(z,t) dt ,
Q
where S° is the weak limit in Lz(n) of a certain subsequence of A: .Sﬁ .
- "k 'k

This means that g, satisfies equation (35a).

Since Sg is a weak limit oft;"‘ms m o k30, N a subsequence of N
k

Np k k’
then
_[Sé(t) Dsé(c) dt & s;p AN{.: SN{:“) DS§§(t) dt (41)
Q (9] '

In addition, by definitiom ofsg,

AN fs{‘(t) DSg(e) dt & fS_._(t) Ds .(t) dt , for all N > 0.
Q o i

and by (41) we obtain

fs (t) Ds DS (t) dt sfse(c) DSe(t) dt (42)
Q Q
By (42) and (35¢) we conclude
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fs&(t:) DSé(t) dt = fse(t) Dse(c) dt
Q

Since S° satisfies condition (35b) then we have

€

°. - . M -
Se Seae in Q

Hence, he(z) = geﬁz) for all z and therefore he_is given as the limit of

hy , uniformly over compact sets im C.
k

It can be proved that there exists a sequence of positive numbers
en-' 0 such that he ~ g uniformly over compact sets in the complex plane.
The proof can be doze by means of similar arguments to those of theorem 3 and
theorem 4 and it will not be included here.

To finish this paper, we would like to point out that efficient algo-

rithms for solving the optimization problem (37a) - (37b) - (37c) are being

studied. We hope to present these numerical results in a future paper.
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.197582042217255e+01
.203312158584595e+01
.206091237068176e+01

.202678632736206e+01,
.205870103836060e+01
.206091237068176e+01,
.203312158584595e+01
.197582042217255e+01
.189027047157288e+01
.177845788002014e+01
.164303123950958e+01
.148721837997437e+01
.131473088264465e+01
.112965250015259e+01
.936323225498199e+00
.739212274551392e+00
.542796492576599e+00'
.351432770430646e+00
.169242218136787e+00

Y S




s

I1I.35

.430034935474396e+00
.U480462282896042e+00
.531662702560425e+00
.583049893379211e+00
.634011387825012e+00
.683917999267578e+00
.732135176658630e+00
.778034687042236e+00
.821004986763000e+00
.860463500022888e+00
.89586645364761U4e+00
.926720023155212e+00
. .952588915824890e+00
.973105013370514e+00
.987974286079407e+00
.996982574462891e+00
.100000000000000e+01
.996982574462891e+00
.987974286079407e+00
.973105013370514e+00
.952588915824890e+00
.926720023155212e+00
.895866453647614e+00
.860463500022888e+00
.821004986763000e+00
.778034687042236e+00
.732135176658630e+00
.683917999267578e+00
.634011387825012e+00
.583049893379211e+00
.531662702560425e+00
.480462282896042e+00
.430034935474396e+00

Table 3




-.438608229160309e-03
-300382077693939e-02

F! -174739360809326e-01
.290687084197998e-01

r -438877940177917e-01
-621192455291748e-01
-838932991027832e-01

» .109291434288025e+00
q -138320922851563e+00
.170929163694382e+00
-206990271806717e+00
-246320739388466e+00
.288645297288895e+00
-333646059036255e+00
-380921900272369e+00

.380931377410889e+0Q0
.333647251129150e+00
.2886U47651672363e+00
.246314048767090e+00
.206980824470520e+00
.170902013778687e+00
.138277649879456e+00
-109225153923035e+00
.837982892990112e-01
.619850158691406e-01
.437070727348328e-01
.288296937942505e-01
.171696543693542e-01
.849115848541260e-02
.253264605998993e-02
-.101298093795776e-02

.887742638587952e-02

III.36

-.522017478942871e-03

.299024581909180e-02
.892090797424316e-02
.175526142120361e-01
.291705131530762e-01
-440077781677246e-01

.622414350509644e-01

.840104818344116e-01
-109402537345886e+00

~ .138423681259155e+00

.171010300517082e+00
.207060426473618e+00
.246372342109680e+00
.288688540458679e+00
.333667993545532e+00
.380940198898315e+00

.38Q945205688477e+00
.333673477172852e+00
.288692474365234e+00
.246390342712402e+00
.207093238830566e+00
.171067237854004e+00
.138515472412109e+00
.109549522399902e+00
.842289924621582¢e-01
.625529289245605e-01
L444283485412598e-01
.297331809997559e-01
.182796716690063e-01
.983729958534241e-02
.41339993476867T7e-02
-8T4757766723633e-03

Table 3

+973609974607825e-03
-811226507276297e-02
.973103661090136e-02
.181229598820210e-01
-295510105788708e-01
-442402735352516e-01
.623708218336105e-01
.840708538889885e-01
.109411068260670e+00
-138399809598923e+00 |
-170979470014572e+00 :
.207024037837982e+00
.246338576078415e+00
.288658857345581e+00
.333654344081879e+00
-380930572748184e+00

.380930572748184e+00
.333654344081879e+00
.288658857345581e+00
.246338576078415e+00
.207024037837982e+00

.170979470014572e+00

.138399809598923e+00
.109411068260670e+00
.840708538889885e-01
.623708218336105e-01
.U42402735352516e-01
.295510105788708e-01
.181229598820210e-01
.973103661090136e-02
.411226507276297e-02
.973609974607825e-03
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Figure 2.a. DFT of 33 samples in (-1.1)
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DFT of 33 samples in (-1/2,1/2)
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Figure 4







